摘要
准确地光伏预测对电力调度、容量分析和机组组合至关重要。现有的数据驱动预测算法在计算速度和预测精度上有一定的提升,但未能考虑光伏发电的内在机理,存在泛化的风险。针对上述问题,提出了一种基于Stacking框架的机理模型和数据驱动结合的预测模型。其中,光伏发电机理模型将嵌入Stacking框架一层预测结构,构成基于长短期记忆神经网络(long short-term memory,LSTM)、极度梯度提升树(extreme gradient boosting,XGBoost)和机理模型的并行预测学习器。机理模型将光伏发电限制在一个合理的范围内,作为数据驱动模型的预测约束。所提出的模型能够从机理模型中提取有用的固有信息,并利用数据分析的能力提取历史数据中的非线性关系。基于安徽省某地区实际数据分析,所提模型相比传统数据驱动方法具有更高的精度。
Accurate photovoltaic forecasting is crucial for power dispatching,capacity analysis and unit commitment.The existing data-driven prediction algorithm has a certain improvement in calculation speed and prediction accuracy,but fails to consider the internal mechanism of photovoltaic power generation.Besides,there is a risk of generalization.To solve the above problems,a mechanism model was proposed based on Stacking framework and a data-driven prediction model.The photovoltaic generator model was embedded in the Stacking framework layer prediction structure to form a parallel predictive learner based on LSTM(long short-term memory),XGBoost,and mechanism models.The mechanism model limited photovoltaic power generation to a reasonable range as a prediction constraint of the data-driven model.The intrinsic information was extracted by mechanism model and the analysis of nonlinear relationship in historical data is driven by data.Based on the actual data analysis of a certain area in Anhui Province,the proposed model has higher accuracy than the traditional data-driven method.
作者
李智
丁津津
陈凡
伍骏杰
樊磊
LI Zhi;DING Jin-jin;CHEN Fan;WU Jun-jie;FAN Lei(State Grid Anhui Electric Power Co.,Ltd.,Hefei 230601,China;State Grid Anhui Electric Power Co.,Ltd.,Electric Power Research Institute,Hefei 230601,China;School of Electrical Engineering and Automation,Anhui University,Hefei 230601,China)
出处
《科学技术与工程》
北大核心
2023年第19期8212-8217,共6页
Science Technology and Engineering
基金
国网公司科技项目(52120522000R)。