期刊文献+

2T1C DRAM based on semiconducting MoS_(2) and semimetallic graphene for in-memory computing

原文传递
导出
摘要 In-memory computing is an alternative method to effectively accelerate the massive data-computing tasks of artificial intelligence(AI)and break the memory wall.In this work,we propose a 2T1C DRAM structure for in-memory computing.It integrates a monolayer graphene transistor,a monolayer MoS_(2)transistor,and a capacitor in a two-transistor-onecapacitor(2T1C)configuration.In this structure,the storage node is in a similar position to that of one-transistor-one-capacitor(1T1C)dynamic random-access memory(DRAM),while an additional graphene transistor is used to accomplish the nondestructive readout of the stored information.Furthermore,the ultralow leakage current of the MoS_(2)transistor enables the storage of multi-level voltages on the capacitor with a long retention time.The stored charges can effectually tune the channel conductance of the graphene transistor due to its excellent linearity so that linear analog multiplication can be realized.Because of the almost unlimited cycling endurance of DRAM,our 2T1C DRAM has great potential for in situ training and recognition,which can significantly improve the recognition accuracy of neural networks.
出处 《National Science Open》 2023年第4期65-75,共11页 国家科学进展(英文)
基金 This work was supported by the National Key Research and Development Program(2021YFA1200500) in part by the Innovation Program of Shanghai Municipal Education Commission(2021-01-07-00-07-E00077) Shanghai Municipal Science and Technology Commission(21DZ1100900).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部