摘要
为解决汽车空调系统不制冷,冷气输出断续等问题,本文分析了汽车空调系统常见故障,提出了以小波BP神经网络为基础的汽车空调系统电磁阀故障诊断方法,利用小波包分解重构方法对电磁阀故障特征进行分解,并提出其故障特征向量,然后采用BP神经网络算法对提取数据进行训练、判断。经验证提出的BP神经网络判断结果与实际故障状态吻合度较高,可以准确判断电磁阀故障类型。
In order to solve the problems of the automobile air-conditioning system,such as no refrigeration,intermittent cold air output,etc.,this paper analyzes the common faults of the automobile air-conditioning system,proposes a fault diagnosis method for the electromagnetic valve of the automobile air-conditioning system based on wavelet BP neural network,uses wavelet packet decomposition and reconstruction method to decompose the fault characteristics of the electromagnetic valve,and proposes its fault feature vector,and then uses BP neural network algorithm to train and judge the extracted data.It is verified that the BP neural network judgment result is highly consistent with the actual fault state,and can accurately judge the fault type of the solenoid valve.
作者
吴磊
Wu Lei(Qingdao Technician College,Shandong Qingdao 266000)
出处
《内燃机与配件》
2023年第12期56-58,共3页
Internal Combustion Engine & Parts
关键词
汽车空调系统
电磁阀
BP神经网络
Automobile air conditioning system
Solenoid valve
BP neural network