摘要
为了在区域尺度上精准和便捷地估测森林生物量,以高分遥感数据和实地调查数据为基础,通过提取植被指数、纹理等遥感特征变量,并运用最近邻算法(k-NN)构建乔木林地上生物量预测模型。结果表明,运用k-NN进行区域尺度上乔木林生物量遥感定量估测,当k值为2,特征为B1(波段1)、SR(简单植被指数)、NDVI(归一化植被指数)、B4(波段4)时,研究区乔木林生物量估测结果最优。通过分析可知:乔木林生物量整体表现不高,地上生物量为803.90万t,单位面积生物量均值为82.15 t/hm^(2);乔木林主要龄组是成熟林时,其面积和生物量占比均最大;在海拔1500~2400 m范围,乔木林单位生物量较高。
In order to accurately and conveniently estimate forest biomass at the regional scale,remote sensing characteristic variables such as vegetation index and texture were extracted based on high-resolution remote sensing data and field survey data,and the nearest neighbor algorithm(k-NN)was used to construct a forest aboveground biomass prediction model.The results showed that using k-NN to quantitatively estimate the biomass of tree forests at the regional scale,when k value was 2 and the characteristics were B1(band 1),SR(simple vegetation index),NDVI(normalized vegetation index)and B4(band 4),the forest biomass estimation results were optimal.The above ground biomass was 8039000 tons,and the average biomass per unit area was 82.15 t/hm^(2).When the main age group of arbor forest wasmature forest,its area and biomass ratio werethe highest.The unit biomass of arbor forest was higher in the altitude range of 1500~2400m.
作者
张绘芳
朱雅丽
张景路
高健
地力夏提·包尔汉
ZHANG Huifang;ZHU Yali;ZHANG Jinglu;GAO Jian;DILIXIATI·Baoerhan(Modern Forestry Research Institute of Xinjiang Academy of forestry,Urumqi 830000,China)
出处
《林业资源管理》
北大核心
2023年第2期104-110,共7页
Forest Resources Management
基金
新疆维吾尔自治区公益性科研院所基本科研业务费专项“新疆山区森林乔木层碳储量动态变化研究”(KY2019043)
新疆维吾尔自治区公益性科研院所基本科研业务费专项“天山西部天然乔木层碳潜力研究”(KY2020019)。
关键词
乔木林
地上生物量
最近邻算法(k-NN)
遥感反演
特征选择
arbor forest
above-ground biomass
nearest neighbor algorithm(k-NN)
remote sensing inversion
feature selection