摘要
将知识图谱作为外部信息引入推荐系统可以有效缓解推荐系统的数据稀疏问题。文章提出一种端到端的神经网络模型,文章使用一种图注意力机制取代基于相似度或交换矩阵计算的离线元路径方法;另外,根据知识图谱中的项目的不同实体类型,文章提出一种多视图记忆注意力网络去学习更深层次的项目表征。文章在MovieLens数据集上进行了实验,实验结果表明,本文的模型明显优于Top-N推荐基线模型。
Exploiting the external information called knowledge graph to recommendation has shown to effectively alleviate the data sparsity problem of recommendation system.Article proposes an end-to-end neural network model.We use a graph atten-tion mechanism to replace the ofiline meta-path method based on similarity or commuting exchange matrix.In addition,accord-ing to the different entity types of items in the knowledge graph,we propose a multi-view mermory attention network to learm more profound item features.Experiments on MovieLens dataset show the effectiveness of our model significantly outperform baseline model for Top-N recommendation.
作者
薛艳斌
王宏生
XUE Yanbin;WANG Hongsheng(School of information science and engineering,Shenyang University of Technology,Shen Yang 110870)
出处
《长江信息通信》
2023年第6期96-98,共3页
Changjiang Information & Communications
关键词
推荐系统
知识图谱
图注意力机制
记忆注意力网络
recommendation system
knowledge graph
graph attention mechanism
memory attention network