摘要
提出一个改进的基于生成对抗网络的协同过滤(CFGAN)的模型,通过引入增强的置换注意力机制,强化其面向稀疏数据集的特征聚焦能力,并考虑用户可能交互物品对推荐结果的影响.此外,将协同用户社交网络从用户反馈中提取的语义好友特征嵌入CFGAN,以实现负样本的个性化抽取,进一步提升模型面向稀疏数据场景的推荐效果.
An improved collaborative filtering framework based on generative adversarial network(CFGAN)model is proposed to enhance the feature focus capability for sparse datasets by introducing an enhanced shuffle attention mechanism,while taking into account the influence of possible user interaction items on the recommendation results.Furthermore,the semantic friend features extracted from user feedback by collaborative user social networks are embedded into CFGAN to achieve personalized extraction of negative samples,further enhancing the model’s recommendation effectiveness for sparse data scenarios.
作者
陈文婷
陈学勤
王伟津
蔡毅津
王一蕾
CHEN Wenting;CHEN Xueqin;WANG Weijin;CAI Yijin;WANG Yilei(College of Computer and Data Science,Fuzhou University,Fuzhou,Fujian 350108,China)
出处
《福州大学学报(自然科学版)》
CAS
北大核心
2023年第4期467-474,共8页
Journal of Fuzhou University(Natural Science Edition)
基金
福建省自然科学基金面上资助项目(2022J01120)。
关键词
个性化推荐
数据稀疏
生成对抗网络
置换注意力
协同用户社交网络
personalized recommendation
data sparseness
generative adversarial network
shuffle attention
collaborative user social network