摘要
利用鸟巢颜色单一的特点,提出一种将YOLOX与颜色空间相结合的鸟巢检测方法,以提高巡检无人机在复杂输电线路背景下对鸟巢检测的准确率.在前端设备Jetson Xavier NX里,采用经过模型调优的YOLOX目标检测网络对鸟巢图像进行检测并截取区域子图;根据颜色空间分布过滤非鸟巢区域,实现鸟巢的精筛.实验结果表明,采用上述方法对测试集中的鸟巢图像进行检测,准确率可达97.20%.
In order to improve the detection accuracy of bird’s nest for unmanned aerial vehicle in complex transmission line backgrounds,a bird nest detection method is proposed which combines YOLOX with color space based on the characteristic of single color of bird nests.In the front-end device Jetson Xavier NX,a YOLOX object detection network that has been fine-tuned and trained is used to detect and crop sub-images of bird’s nest images.The non-nest regions are filtered according to the color space distribution to achieve the fine screening of bird nests.The experimental results show that the detection of bird nest images in the test set using the above method can reach an accuracy of 97.20%.
作者
陈杰
朱仕焜
孙嫱
林财德
江灏
CHEN Jie;ZHU Shikun;SUN Qiang;LIN Caide;JIANG Hao(Zhangzhou Power Supply Company,State Grid Fujian Electric Power Co.,Ltd.,Zhangzhou,Fujian 363020,China;Pinghe County Power Supply Company,State Grid Fujian Electric Power Co.,Ltd.,Zhangzhou,Fujian 363799,China;College of Electrical Engineering and Automation,Fuzhou University,Fuzhou,Fujian 350108,China)
出处
《福州大学学报(自然科学版)》
CAS
北大核心
2023年第4期539-546,共8页
Journal of Fuzhou University(Natural Science Edition)
基金
福建省高校产学研合作资助项目(2019H600)
国网福建省电力有限公司科技资助项目(521350210034)。
关键词
鸟巢检测
电力巡检
深度学习
颜色空间
无人机
bird’s nest detection
power patrol
deep learning
color space
unmanned aerial vehicle