期刊文献+

基于数据增强和特征嵌入的自动调制识别 被引量:1

Automatic Modulation Recognition Based on Data Enhancement and Feature Embedding
下载PDF
导出
摘要 基于端到端的深度学习模型已经被广泛应用于自动调制识别。现有的深度学习方案大多数依赖于丰富的样本分布,而大批量的标记训练集通常很难获得。提出了一种基于数据驱动和选择性核卷积神经网络(Convolutional Neural Network,CNN)的自动调制识别框架。首先开发深度密集生成式对抗网络增强5种调制信号的原始数据集;其次选择平滑伪Wigner-Ville分布作为信号的时频表示,并将注意力模块用于聚焦时频图像分类中的差异区域;最后将真实信号输入轻量级卷积神经网络进行时间相关性提取,并融合信号的时频特征完成分类。实验结果表明,所提算法提高了在低信噪比情况下的识别精度,表现出较强的鲁棒性。 The end-to-end deep learning model has been effectively applied in automatic modulation recognition(AMR).Most deep learning schemes need a large number of training samples,and a large number of labeled training sets are usually difficult to obtain.The authors propose an automatic modulation recognition framework based on data-driven and selective kernel convolution neural network(CNN).Firstly,a deep dense generative adversarial network(GAN)is developed to enhance the original data set of five modulation signals.Secondly,the smooth pseudo Wigner-Ville distribution is selected as the time-frequency representation of the signal,and the attention block is used to focus the difference region in the time-frequency image classification.Finally,the real signal is input into lightweight CNN for time correlation extraction,and the time-frequency characteristics of the signal are fused to complete the classification.Experimental results show that the proposed algorithm improves the recognition accuracy in the case of low signal-to-noise ratio and shows strong robustness.
作者 谭凯文 闫文君 宫跃 张婷婷 TAN Kaiwen;YAN Wenjun;GONG Yue;ZHANG Tingting(Aviation Combat Service College,Naval Aviation University,Yantai 264001,China)
出处 《电讯技术》 北大核心 2023年第7期927-932,共6页 Telecommunication Engineering
基金 国家自然科学基金资助项目(91538201) “泰山学者”工程专项经费基金(ts201511020) 信息系统安全技术国家重点实验室基金资助课题(6142111190404)。
关键词 自动调制识别 卷积神经网络 生成式对抗网络 注意力机制 数据增强 automatic modulation recognition convolutional neural network generative adversarial network attention mechanism data enhancement
  • 相关文献

参考文献1

二级参考文献1

共引文献10

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部