期刊文献+

不同车速下自适应变化的路径跟踪控制研究

Research on path tracking control of adaptive changes at different vehicle velocities
下载PDF
导出
摘要 路径跟踪是自动驾驶汽车的核心技术,许多控制算法已被广泛应用于路径跟踪任务。为了提高路径跟踪在不同速度下的自适应能力,提出了一种结合预测轨迹和模糊控制的自适应Stanley路径跟踪控制器。参考人类驾驶员经验,模糊控制器根据车辆的横纵向速度实时调整预瞄距离,预测轨迹根据纵向速度实时调整预测时间进行提前控制。最后设计了自适应邻域的粒子群算法来对控制器参数进行优化。通过Simulink-CarSim的联合仿真验证,证明自适应Stanley控制器可以显著提高对不同速度的适应性和跟踪性能。 Path tracking is the core technology of autonomous vehicles,and many control algorithms have been widely used in path tracking tasks.In order to improve the adaptive ability of path tracking at different speeds,an adaptive Stanley path tracking controller that combines predictive trajectory and fuzzy control is proposed.Referring to the experience of human drivers,the fuzzy controller adjusts the preview distance in real time according to the horizontal and vertical speed of the vehicle,and the predicted trajectory adjusts the predicted time in real time according to the longitudinal speed to perform advance control.Finally,an adaptive neighborhood particle swarm optimization algorithm is designed to optimize the controller parameters.Through the co-simulation verification of Simulink-CarSim,it is proved that the adaptive Stanley controller can significantly improve the adaptability and tracking performance to different velocity.
作者 马思群 王兆强 赵佳伟 韩博 MA Siqun;WANG Zhaoqiang;ZHAO Jiawei;HAN Bo(School of Mechanical and Automotive Engineering,Shanghai University of Engineering Science,Shanghai 201620,China)
出处 《农业装备与车辆工程》 2023年第7期1-6,共6页 Agricultural Equipment & Vehicle Engineering
基金 国家自然科学基金青年科学基金项目(51505272)。
关键词 路径跟踪 Stanley控制 模糊控制 粒子群优化 path tracking Stanley control fuzzy control particle swarm optimization
  • 相关文献

参考文献2

二级参考文献27

  • 1SNIDER J M. Automatic steering methods for autonomous automobile path tracking [R]. Pittsburgh, PA: Robotics Institute, Carnegie Mellon University, 2009.
  • 2FENTON R, MAYHAN R. Automated highway studies at the Ohio state university-An overview [J]. IEEE Transaction on Vehicular Technology, 1991, 40(1): 100-113.
  • 3MACADAM C C. An optimal preview control for linear systems [J]. Journal of Dynamical System, Measurement, Control, 1980, 102: 188-190.
  • 4MACADAM C C. Application of an optimal preview control for simulation of closed-loop automobile driving [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1981, 11: 393-399.
  • 5SHLADOVER S, DESOER C, HEDRICK J, TOMIZUKA M, WALRAND J, ZHANG W B, MCMAHON D H, PENG H, SHEIKHOLESLAM S, MCKEOWN N. Automatic vehicle control developments in the PATH program [J]. IEEE Transaction on Vehicular Technology, 1991, 40(1): 114-130.
  • 6SALVUCCI D D, GRAY R. A two-point visual control model of steering [J]. Perception, 2004, 33:1233- 1248.
  • 7MARINO R, SCALZI S, NETTO M. Nested PID steering control for lane keeping in autonomous vehicles [J]. Control Engineering Practice, 2011, 19(12): 1459-1467.
  • 8GAO Fu-dong, PAN Cun-yun, HAN Yan-yan, ZHANG Xiang. Nonlinear trajectory tracking control of a new autonomous underwater vehicle in complex sea conditions [J]. Journal of Central South University, 2012, 19: 1859-1868.
  • 9FERNANDEZ L D, MILANES V, PARRA A I, GAVILAN M, GARCIA D I, PEREZ J, SOTELO M A. Autonomous pedestrian collision avoidance using a fuzzy steering controller [J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12: 390-401.
  • 10PEREZ J, MILANES V, ONIEVA E. Cascade architecture for lateral control in autonomous vehicles [J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(1): 73-82.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部