期刊文献+

Spectral Gap of the Largest Eigenvalue of the Normalized Graph Laplacian

原文传递
导出
摘要 We offer a new method for proving that the maxima eigenvalue of the normalized graph Laplacian of a graph with n vertices is at least n+1/n−1 provided the graph is not complete and that equality is attained if and only if the complement graph is a single edge or a complete bipartite graph with both parts of size n−1/2.With the same method,we also prove a new lower bound to the largest eigenvalue in terms of the minimum vertex degree,provided this is at most n−1/2.
出处 《Communications in Mathematics and Statistics》 SCIE 2022年第3期371-381,共11页 数学与统计通讯(英文)
基金 Open access funding provided by Project DEAL.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部