期刊文献+

On the Base Point Locus of Surface Parametrizations:Formulas and Consequences

原文传递
导出
摘要 This paper shows that the multiplicity of the base point locus of a projective rational surface parametrization can be expressed as the degree of the content of a univariate resultant.As a consequence,we get a new proof of the degree formula relating the degree of the surface,the degree of the parametrization,the base point multiplicity and the degree of the rational map induced by the parametrization.In addition,we extend both formulas to the case of dominant rational maps of the projective plane and describe how the base point loci of a parametrization and its reparametrizations are related.As an application of these results,we explore how the degree of a surface reparametrization is affected by the presence of base points.
出处 《Communications in Mathematics and Statistics》 SCIE 2022年第4期757-783,共27页 数学与统计通讯(英文)
基金 partially supported by FEDER/Ministerio de Ciencia,Innovación y Universidades-Agencia Estatal de Investigación/MTM2017-88796-P(Symbolic Computation:new challenges in Algebra and Geometry together with its applications)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部