期刊文献+

HOS15 represses flowering by promoting GIGANTEA degradation in response to low temperature in Arabidopsis 被引量:1

原文传递
导出
摘要 Flowering is the primary stage of the plant developmental transition and is tightly regulated by environmental factors such as light and temperature.However,the mechanisms by which temperature signals are integrated into the photoperiodic flowering pathway are still poorly understood.Here,we demonstrate that HOS15,which is known as a GI transcriptional repressor in the photoperiodic flowering pathway,controls flowering time in response to low ambient temperature.At 16℃,the hos15 mutant exhibits an early flowering phenotype,and HOS15 acts upstream of photoperiodic flowering genes(GI,CO,and FT).GI protein abundance is increased in the hos15 mutant and is insensitive to the proteasome inhibitor MG132.Furthermore,the hos15 mutant has a defect in low ambient temperature-mediated GI degradation,and HOS15 interacts with COP1,an E3 ubiquitin ligase for GI degradation.Phenotypic analyses of the hos15 cop1 double mutant revealed that repression of flowering by HOS15 is dependent on COP1 at 16℃.However,the HOS15-COP1 interaction was attenuated at 16℃,and GI protein abundance was additively increased in the hos15 cop1 double mutant,indicating that HOS15 acts independently of COP1 in GI turnover at low ambient temperature.This study proposes that HOS15 controls GI abundance through multiple modes as an E3 ubiquitin ligase and transcriptional repressor to coordinate appropriate flowering time in response to ambient environmental conditions such as temperature and day length.
出处 《Plant Communications》 SCIE CSCD 2023年第4期225-239,共15页 植物通讯(英文)
基金 This research was supported by National Research Foundation of Korea(NRF)grants funded by the Korean Government(MSIT-2022R1A5A1031361 and MSIT-2020R1A2C3014814 to W.-Y.K.) the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2021R1I1A1A01059532 to G.A.and NRF-2019R1I1A1A01041422 to H.J.P.)。
  • 相关文献

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部