期刊文献+

大厚度NiCrFe-7熔化焊焊缝微裂纹 被引量:1

Study on micro-cracks of the NiCrFe-7 weld metal with large thickness
下载PDF
导出
摘要 通过金相显微镜、扫描显微镜和电子背散射衍射方法对一种大厚度NiCrFe-7熔化焊焊缝中的微裂纹进行了表征和机制分析,焊接方法分别为焊条电弧焊(SMAW)和钨极氩弧焊(GTAW).结果表明,该种热裂纹为沿晶的再热裂纹,其形成是由于焊接热影响区在高温下发生应力松弛现象,导致晶界大尺寸MC型碳化物和氧化物处出现应力集中,造成裂纹沿这些颗粒内部或界面开裂.相比于GTAW工艺,SMAW工艺的焊缝中存在大量氧化物,造成SMAW焊缝再热裂纹倾向高于GTAW焊缝,进而导致前者焊缝弯曲性能不符合国家标准要求.通过此研究,建议采用保护气效果更佳的GTAW工艺. Micro-cracks in a NiCrFe-7 weld metal with large thickness were characterized and analyzed by metallographic microscopy,scanning microscopy,and electron backscatter diffraction.Two kinds of welding methods,shielded metal arc welding(SMAW)and gas tungsten arc welding(GTAW),were applied in our study.The results showed that the crack was a kind of reheating crack along the grain boundaries in the heat affected zone(HAZ).These cracks were induced by the stress relaxation in the heat affected zone during welding process,which resulted in local stress concentration around the largesize MC carbides and oxides.The cracks nucleated and propagated within these particles or along the interfaces of the particles/matrix.Compared with the GTAW process,there were a large number of oxides in the weld metal of the SMAW process.Therefore,the tendency of reheating cracks in the SMAW was much higher than that of the GTAW,which resulted in the bending properties of the former weld failed to meet the requirements of the national standard.The GTAW process with better effect of protective gas was recommended for the Ni-base weld metal with large thickness.
作者 吴栋 董文超 鲁艳红 侯冬冬 张茂龙 陆善平 WU Dong;DONG Wenchao;LU Yanhong;HOU Dongdong;ZHANG Maolong;LU Shanping(Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China;Shanghai Electric Nuclear Power Equipment Corporation Ltd.,Shanghai 201306,China)
出处 《焊接学报》 EI CAS CSCD 北大核心 2023年第6期15-19,I0003,I0004,共7页 Transactions of The China Welding Institution
基金 国家重点研发计划资助项目(2018YFA0702902)。
关键词 镍基焊缝 熔化焊 沿晶裂纹 微观组织 Ni-base weld fusion welding intergranular crack microstructure
  • 相关文献

参考文献3

二级参考文献50

  • 1M~ Casales, V.M. Salinas-Bravo, A. Martinez-Villafane, J.G. Gon zalez-Rodriguez, Mater. Sci. Eng. A 332 (2002) 223-230.
  • 2R.S. Durra, R. Tewari, EK. De, Corros. Sci. 49 (2007) 303-318.
  • 3J. Crum, R. Scarberry, J. Mater. Energy Syst. 4 (1982) 125-130.
  • 4S.M. Corporation, lnconel Alloy 690 (October 9, 2009), www specialmetals.com.
  • 5P. Diano, A. Muggeo, J.C. Van Duysen, M. Guttmann, J. Nucl. Mater. 168 (1989) 290-294.
  • 6J.J. Kai, M.N. Liu, Seripta Metall. 23 (1989) 17-22.
  • 7S.S. Hsu, S.C. Tsai, J.J. Kai, C.H. Tsai, J. Nucl. Mater. 184 (1991) 97-106.
  • 8G.E. Fuchs, S.Z. Hayden, Scripta Metall. Mater. 25 (1991) 1483- 1488.
  • 9J.J. Kai, C.H. Tsai, G,E Yu, Nuel. Eng. Des. 144 (1993) 449-457.
  • 10K. Stiller, Surf. Sci. 266 (1992) 402-408.

共引文献17

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部