摘要
传统建筑学专业基础类课程教学资源分配方法对下降梯度的计算不够精细,导致教学资源分配结果的召回率不高,为此提出基于深度强化学习的建筑学专业基础类课程教学资源分配方法。首先,确定资源分配关键节点,基于深度强化学习计算分配梯度;其次,基于深度强化学习编写资源分配方法,输出教学资源分配结果;最后,设计对比实验。实验结果表明,该方法的召回率高于其他方法,能够有效提高教学资源分配结果的召回率。
The traditional allocation method of teaching resources for basic courses in architecture is not precise enough in calculating the descent gradient,resulting in a low recall rate of teaching resource allocation results.Therefore,a deep reinforcement learning based teaching resource allocation method for basic courses in architecture is proposed.Firstly,determine the key nodes for resource allocation and calculate the allocation gradient based on deep reinforcement learning.Secondly,based on deep reinforcement learning,write resource allocation methods and output teaching resource allocation results.Finally,design a comparative experiment.The experimental results show that the average recall rate of this method is 0.247,which is superior to other methods and can effectively improve the recall rate of teaching resource allocation results.
作者
张诗雅
腾天骥
ZHANG Shiya;TENG Tianji(School of Architecture and Planning,Jilin University of Architecture and Technology,Changchun Jilin 130000,China;Jilin Hongyuan Construction Engineering Co.,Ltd.,Changchun Jilin 130000,China)
出处
《信息与电脑》
2023年第8期72-74,共3页
Information & Computer
基金
2022年度吉林省高等教育学会高教科研课题“应用型本科高校一流建筑学专业实践课程建设与实践研究”(项目编号:JGJX2022D586)
2021年度吉林省住房和城乡建设职业教育教学指导委员会教学改革研究课题“基于‘双一流’背景下的应用型本科高校建筑学专业课程教学模式创新研究”(项目编号:ZJHZW2021019)。
关键词
深度强化学习
资源分配
教学资源
建筑学专业
deep reinforcement learning
resource allocation
teaching resources
architecture major