期刊文献+

基于神经网络的COVID-19数据分析与预测

Analysis and Prediction of COVID-19 Data Based on Neural Networks
下载PDF
导出
摘要 文章针对新型冠状病毒(COVID-19)管控难以及疫情治理难等普遍性问题,对国内外疫情数据进行预处理并实现数据的可视化显示,然后通过时序分析方法中的趋势分析和突变分析识别,建立基于神经网络的数据分析模型——ANN模型和LSTM模型。通过训练模型展示出疫情相关结果,预测疫情发展趋势。其结果与实际趋势能够很好地对应起来,进一步验证了两种模型的有效性和实用性。 In view of the common problems such as the difficulty of COVID-19 management and control and the difficulty of epidemic management,this paper preprocesses the domestic and foreign epidemic data and realizes the visual display of the data.Then,through the trend analysis and muta-tion analysis identification in the time series analysis method,the data analysis model based on neural networks-ANN model and LSTM model are es-tablished.Display epidemic related results through training models and predict the development trend of the epidemic.The results correspond well with the actual trends,further verifying the effectiveness and practicali-ty of the two models.
作者 杨芷铭 谢欧 谢文武 YANG Zhiming;XIE Ou;XIE Wenwu(School of Information Science and Engineering,Hunan Institute of Science and Technology,Yueyang 414006,China)
出处 《现代信息科技》 2023年第13期32-38,共7页 Modern Information Technology
关键词 神经网络 数据预测 数据分析 COVID-19 neural network data prediction data analysis COVID-19
  • 相关文献

参考文献10

二级参考文献86

共引文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部