摘要
提出了一种在满足动力性需求并且以氢燃料电池堆作为主要能源的前提下,能有效延长电堆使用寿命的能量管理策略。提出将需求功率SG滤波后再进行规则控制的能量管理策略,将多种循环工况的结果进行手动优化后作为训练数据集,设计三输入一输出的自适应神经模糊推理系统控制器,根据其输出结果再进行一次滤波最终形成基于自适应神经模糊推理系统优化的能量管理策略。使用CLTC-P循环工况对能量管理策略进行仿真验证,结果表明,基于自适应神经模糊推理系统优化的能量管理策略能有效延长氢燃料电池剩余使用寿命,相比滤波加规则策略剩余使用寿命增加了33%,并能保持动力电池SOC处于适宜水平。
An energy management strategy,with a hydrogen fuel cell reactor serving as the primary energy source,is proposed to effectively extend reactor life while satisfying the power demands.Initially,the energy management strategy employing SG filtering followed by regular control is introduced.Then,the results obtained from various cycle conditions are manually optimized and used as training datasets to design an ANFIS(Adaptive-Network-Based Fuzzy Inference System)controller featuring three inputs and one output.The energy management strategy based on ANFIS optimization is finally formed after an additional filtering according to the output results.The simulation results show that the energy management strategy based on ANFIS optimization effectively extends the remaining service life of the hydrogen fuel cells by 33% compared with the filter-plus-rule strategy,and it also maintains the SOC of the power cells at an appropriate level.
作者
刘建国
任飞龙
颜伏伍
吴友华
孙云飞
胡达锋
陈挪
LIU Jianguo;REN Feiong;YAN Fuwu;WU Youhua;SUN Yunfei;HU Dafeng;CHEN Nuo(Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Foshan 528200,Guangdong,China;Hubei Key Laboratory of Advanced Technology for Automotive Components,Wuhan University of Technology,Wuhan 430070,China;Hubei Collaborative Innovation Center for Automotive Components Technology,Wuhan 430070,China;Hubei Research Center for New Energy&Intelligent Connected Vehicle,Wuhan 430070,China;Ningbo Huade Automobile Parts Co.,Ltd.,Ningbo 315000,Zhejiang,China;Ningbo Huake Automobile Parts Co.,Ltd.,Ningbo 315000,Zhejiang,China)
出处
《汽车工程学报》
2023年第4期517-527,共11页
Chinese Journal of Automotive Engineering
基金
国家自然科学基金项目(51975434)
先进能源科学与技术广东省实验室佛山分中心(佛山仙湖实验室)开放基金资助项目(XHD2020-003)。