期刊文献+

基于机器学习的锂离子电池荷电状态多步预测 被引量:1

Multi-Step Ahead Forecasting of Lithium-Ion Battery State of Charge Based on Machine Learning
下载PDF
导出
摘要 先进电池管理技术依赖于对未来一段时间荷电状态变化的预测,难点在于误差积累和时间依赖性降低引起的预测精度下降。提出采用机器学习结合多步预测策略来提升荷电状态多步预测精度,利用实际锂电池数据研究了不同多步预测策略的效果。结果表明,实际锂电池荷电状态预测在充电过程中具有显著线性特性,放电过程表现出非线性特性。预测步长为15个时,LR模型、KNN模型、RF模型的MAPE均低于6%,R^(2)均大于0.90。线性回归结合MIMO策略具有最大的实际应用潜力。 Advanced battery management technology relies on the near-future prediction of state of charge(SOC).However,the accumulation of errors and the diminished time-dependency lead to a decline in prediction accuracy.In this paper,the machine learning algorithms combined with multi-step prediction strategies are proposed to improve the accuracy of SOC over multiple steps ahead.The effects of different multi-step prediction strategies are studied based on actual lithium battery data.The results show that the actual lithium battery SOC prediction exhibits a significant linear characteristic during the charging phase,and conversely,a nonlinear characteristic in the discharging process.Furthermore,with the prediction step size of 15,the MAPEs of the LR,KNN,and RF models are below 6%,and the R^(2) values are greater than 0.90.It is found that the LR combined with MIMO shows the greatest potential for practical applications.
作者 于秋月 刘江岩 何林 张青 谢翌 李夔宁 YU Qiuyue;LIU Jiangyan;HE Lin;ZHANG Qing;XIE Yi;LI Kuining(Key Laboratory of Low-Grade Energy Utilization Technologies and Systems,Chongqing University,Chongqing 400044,China;School of Energy and Power Engineering,Chongqing University,Chongqing 400044,China;School of Mechanical and Vehicle Engineering,Chongqing University,Chongqing 400044,China)
出处 《汽车工程学报》 2023年第4期586-596,共11页 Chinese Journal of Automotive Engineering
基金 重庆市自然科学基金面上项目(cstc2019jcyj-msxmX0537)。
关键词 锂离子电池 荷电状态 机器学习 多步预测 lithium-ion battery state of charge machine learning multi-step ahead forecasting
  • 相关文献

参考文献10

二级参考文献155

  • 1秦鹏,王振新,康健强,王菁,朱国荣,向馗.实时辨识锂离子电池参数并基于改进AEKF估算SOC[J].电子测量技术,2020(10):30-35. 被引量:6
  • 2陈全世,林成涛.电动汽车用电池性能模型研究综述[J].汽车技术,2005(3):1-5. 被引量:85
  • 3林成涛,仇斌,陈全世.电动汽车电池功率输入等效电路模型的比较研究[J].汽车工程,2006,28(3):229-234. 被引量:52
  • 4吴东兴,关道诤,齐国光.高精度预测SOC的混合电动车电池管理系统的研究[J].高技术通讯,2006,16(4):391-394. 被引量:14
  • 5DING Z W, WANG S L,ZHAO W J, et al. Studyabout lithium battery’s characteristics[ C]. Computer,Mechatronics, Control and Electronic Engineering(CMCE 2010),2010: 639-642.
  • 6WU T Z, CHEN X G, XIA F Z,el at. Research onSOC hybrid estimation algorithm of power battery basedon EKF[ C]. Power and Energy Engineering Conference(APPEEC), Asia-Pacific, 2011: 1-3.
  • 7RAVISBANKAR R, SARMA V, DALER N. Batterymodeling for energy-aware system design [ J ]. IEEEComputer Society, 2003 ,36( 12) : 77-87.
  • 8CHEN M,GABRIEL ARM. Accurate electrical bat-tery model capable of predicting runtime and I-V per-formance [J ]. IEEE Transactions on Energy Conver-sion, 2006,21(2) ; 504-511.
  • 9KARDAN E,MAURACHER P, SCHOPE F. Electro-chemical modeling of lead/acid batteries under operat-ing conditions of electric vehicles[ J]. Journal of PowerSources, 1997, 64 (1): 175-180.
  • 10CHEN Y F, EVANS J W. Heat transfer phenomena inlithium/polymer-electrolyte batteries for electric vehicleapplication[ J]. Journal of the Electrochemical Society,1993, 140(7) :1833-1838.

共引文献244

同被引文献22

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部