期刊文献+

高光谱遥感图像本征信息分解前沿与挑战

Hyperspectral remote sensing image intrinsic information decomposition:advances and challenges
下载PDF
导出
摘要 高光谱作为一种图谱合一的成像技术,在对地观测、航空航天领域具有十分重要的应用。然而,作为光学遥感的分支,高光谱成像易受到大气、光照等因素的影响。高光谱图像本征信息分解旨在抑制复杂环境因素对地物光谱与空间特征的影响,准确提取并表征观测场景最本征的光谱与空间信息,提升高光谱图像识别与解译性能。本文主要对代表性的高光谱图像本征信息分解的模型和方法进行综述,系统地分析了各种典型方法的原理及优缺点,进一步阐述了实际遥感应用中现有本征信息分解面临的挑战性难题,并结合遥感实际应用,对高光谱图像本征信息分解技术的发展趋势进行了展望。 Hyperspectral imaging is a powerful image acquisition method which can record the rich spectral and spatial information of the scene in a high dimensional data cube.Due to this advantage,hyperspectral imaging has been very useful in many practical applications of earth observation and aerospace.However,as a branch of optical remote sensing,the performance of hyperspectral imaging may be affected by many factors such as atmosphere and illumination.The objective of hyperspectral intrinsic image decomposition is to decrease the influence of complex environmental factors,extract and represent the intrinsic spectral and spatial information of hyperspectral images accurately,so as to improve the performance of hyperspectral image recognition and interpretation.This paper reviews some representative work in hyperspectral intrinsic image decomposition.The principle,advantages,and disadvantages of some typical intrinsic image decomposition methods have been analyzed.Moreover,the challenging problems of intrinsic image decomposition faced in real remote sensing applications have been illustrated.At last,based on the requirements of practical remote sensing applications,we discuss the development trends of hyperspectral intrinsic image decomposition.This review could be a good guide for those researchers who are interested in the advances and applications of hyperspectral remote sensing.More importantly,it gives some important future research directions that could be investigated in the future.
作者 李树涛 吴琼 康旭东 LI Shutao;WU Qiong;KANG Xudong(College of Electrical and Information Engineering,Hunan University,Changsha 410082,China;School of Robotics,Hunan University,Changsha 410012,China)
出处 《测绘学报》 EI CSCD 北大核心 2023年第7期1059-1073,共15页 Acta Geodaetica et Cartographica Sinica
基金 国家重点研发计划(2021YFA0715203) 国家自然科学基金(62221002,61890962,61871179,62201207) 湖南省国家科学基金(2020GK2038) 湖南省自然科学基金杰出青年(2021JJ022) 湖湘青年人才科技创新计划(2020RC3013) 中国博士后科学基金(2022M721106)。
关键词 高光谱遥感 人工智能 本征信息分解 图像识别与解译 hyperspectral remote sensing artificial intelligence intrinsic image decomposition image recognition and interpretation
  • 相关文献

参考文献5

二级参考文献20

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部