期刊文献+

光栅反散射问题的神经网络方法 被引量:1

Neural Network Method for Inverse Diffraction Grating Problem
下载PDF
导出
摘要 针对测量的近场数据来研究光栅形状重构问题,提出了一种基于端对端结构的神经网络方法。该方法是一种循环神经网络,采用序列对序列的方式进行计算。网络模型以近场数据作为输入,以光栅形状参数作为输出,先利用编码端对输入的近场数据进行特征提取,再通过Adam算法更新模型权重,最后使用解码端进行光栅形状参数的反演。此外,模型利用多个门控循环单元从近场数据中提取近场特征,并将该特征引入到解码端中,为反演光栅形状参数提供了更多的特征参考,进一步提高反演效果。数值实验说明该方法可以有效地重构光栅的形状。 In this paper,we study the problem of grating shape reconstruction based on the measured near-field data,and propose a neural network method based on the end-to-end structure.This method is a cyclic neural network,which uses the sequence to sequence method to calculate.The network model takes the near-field data as the input,and the shape parameters of the grating as the output.Firstly,the encoder is used to extract the features of the input near-field data,and then the Adam algorithm is used to update the model weight.Finally,the decoder is used to invert the shape parameters of grating.Moreover,the model uses multiple gating cycle units to extract near-field features from the near-field data and introduces this feature into the decoding end,which provides more feature reference for the inversion grating shape parameters and further improves the inversion effect.Numerical experiments show that this method can reconstruct the shape of grating effectively.
作者 王丹 尹伟石 孟品超 WANG Dan;YIN Weishi;MENG Pinchao(School of Mathematics and Statistics,Changchun University of Science and Technology,Changchun 130022)
出处 《长春理工大学学报(自然科学版)》 2023年第3期137-142,共6页 Journal of Changchun University of Science and Technology(Natural Science Edition)
基金 吉林省自然科学基金(20220101040JC)。
关键词 光栅反散射问题 神经网络 门控循环单元 长短期记忆神经网络 inverse diffraction grating problem neural network gated recurrent unit long short-term memory neural network
  • 相关文献

参考文献1

二级参考文献12

  • 1Petit R. Electromagnetic Theory of Gratings [ M ]. Berlin : Springer-Verlag, 1980.
  • 2Colton D, Kress R. Inverse Acoustic and Electromagnetic Scattering Theory [ M]. Berlin: Springer-Verlag, 1998.
  • 3BAO Gang. Finite Elements Approximation of Time Harmonic Waves in Periodic Structrues [ J ]. SIAM J Numer Anal, 1995, 32(4): 1155-1169.
  • 4BAO Gang, Bonnetier E. Optimal Design of Periodic Diffractive Structures [J]. Appl Math Opt, 2001, 43(2): 103-116.
  • 5BAO Gang, HUANG Kai, Schmidt G. Optimal Design of Nonlinear Diffraction Gratings [ J ]. J Comp Phy, 2003, 184(1) : 106-121.
  • 6Arens T, Kirsch A. The Factorization Method in Inverse Scattering from Periodic Structures [ J ]. Inverse Problems, 2003, 19(5): 1195-1211.
  • 7Dobson D. Optimal Design of Periodic Antireflective Structures for the Helmhohz Equation [ J ]. Eur J Appl Math, 1993, 4 : 321-340.
  • 8Kirsch A. Uniqueness Theorems in Inverse Scattering Theory for Periodic Structures [ J]. Inverse Problem, 1993, 10( 1 ) : 145-152.
  • 9Kirsch A, Kress R. Uniqueness in Inverse Scattering [J]. Inverse Problem, 1993, 9: 285-300.
  • 10BAO Gang. A Uniqueness Theorem for an Inverse Problem in Periodic Diffractive Optics [ J]. Inverse Problems, 1994, 10(2) : 335-340.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部