期刊文献+

基于空间变换网络的盲信号调制识别方法

Blind Signal Modulation Recognition Method Based on Spatial Transformer Network
下载PDF
导出
摘要 通信信号的自动调制识别(Automatic Modulation Recognition,AMR)在各种领域都扮演着较为重要的角色。基于神经网络的调制识别方法,能够根据提取出已调信号中可以用于分类的高层次抽象特征,相比于传统的基于人为定义特征的识别方法,具有识别率更高的优势。在实际的调制识别应用场景中,由于盲接收参数估计不准确等原因,调制识别的输入信号样本存在较大的相位、频率偏移,或时间尺度改变。已有的深度学习调制识别方法未考虑上述原因带来的影响,导致调制识别率的降低。提出了一种基于空间变换网络(Spatial Transformer Network,STN)的调制识别方法,在网络模型中引入了通信中同步的一些先验模型,通过空间变换子网络实现先验模型,在一定程度上减轻相位、频率偏移以及不同时间尺度对调制识别的影响。通过仿真数据集的实验证明,提出的方法相比于传统的CNN网络、ResNet网络和CLDNN网络的识别率在SNR>0的条件下分别提高了8.3%、4.9%和5.2%,且更加容易训练,其收敛时所需的训练时间相比于CNN网络、ResNet网络和CLDNN网络分别下降了3.5%、27%和85%。 features.However,in real ARM application scenarios,the input for AMR has significant frequency and phase bias or time scale changes due to inaccurate blind receiving parameter estimation.Existing AMR method based on neural network can thus encounter a decrease in recognition rate due to the above mentioned reasons.An AMR method based on Spatial Transformer Network(STN)is proposed,in which some a priori modulation models are introduced in modulations to alleviate the effects of frequency bias,phase bias and different time scales.The proposed method is validated through a simulated dataset,which proves that the proposed method achieves an increase of 8.3%,4.9%and 5.2%in recognition rate over traditional CNN network,ResNet network and CLDNN network respectively when SNR is greater than 0.The proposed method can be trained more easily with a decrease of 3.5%,27%and 85%in training time as compared with traditional CNN network,ResNet network and CLDNN network respectively.
作者 钟读贤 刘慧彬 ZHONG Duxian;LIU Huibin(School of Electronic Information and Electrical Engineering,Hefei Normal University,Hefei 230601,China)
出处 《无线电工程》 北大核心 2023年第8期1829-1835,共7页 Radio Engineering
基金 2022年国家级大学生创新训练项目(14098083)。
关键词 调制识别 空间变换网络 深度学习 modulation recognition spatial transformer network deep learning
  • 相关文献

参考文献6

二级参考文献68

  • 1王建新,宋辉.基于星座图的数字调制方式识别[J].通信学报,2004,25(6):166-173. 被引量:56
  • 2孙闽红,赵太飞,郭勇,王茂芝.基于决策树的调制信号自动识别算法及其DSP实现[J].桂林工学院学报,2005,25(1):115-118. 被引量:5
  • 3李俊俊,陆明泉,冯振明.基于支持向量机的分级调制识别方法[J].清华大学学报(自然科学版),2006,46(4):500-503. 被引量:10
  • 4李建东,冯祥.基于支持矢量机和循环累积量的调制识别算法[J].系统工程与电子技术,2007,29(4):520-523. 被引量:9
  • 5Wu Yi,Lim J W,Yang M H.Online Object Tracking:a Benchmark[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2013:2411-2418.
  • 6SanMiguel J C,Cavallaro A,Martínez J M.Adaptive Online Performance Evaluation of Video Trackers[J].IEEE Transactions on Image Processing,2012,21(5):2812-2823.
  • 7Salti S,Cavallaro A,Stefano L D.Adaptive Appearance Modeling for Video Tracking:Survey and Evaluation[J].IEEE Transactions on Image Processing,2012,21(10):4334-4348.
  • 8Porikli F,Yilmaz A.Object Detection and Tracking[J].Studies on Computational Intelligence,2012,409:3-41.
  • 9Zhang Shengping,Yao Hongxun,Sun Xin,et al.Sparse Coding Based Visual Tracking:Review and Experimental Comparison[J].Pattern Recognition,2013,46(7):1772-1788.
  • 10Mei Xue,Ling Haibin.Robust Visual Tracking Using L1 Minimization[C]//IEEE 12th International Conference on Computer Vision.Piscataway:IEEE,2009:1436-1443.

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部