期刊文献+

基于BP神经网络的涡扇发动机机载模型

Turbofan Engine Onboard Model Based on BP Neural Network
下载PDF
导出
摘要 针对发动机机载的工程需求,利用BP神经网络建立一种涡扇发动机机载模型。本文利用部件级模型建立起两个部件“输入参数-输出参数”数据集,并采用BP神经网络算法对数据集进行训练,建立足以替换部分旋转部件和全部尾喷管的BP神经网络。并在设计点状态对建立的机载模型进行仿真验证,结果表明,风扇部件离线神经网络模型较热力学模型节省约40%的耗时,压气机部件离线神经网络模型较热力学模型节省约50%的耗时,尾喷管部件节省耗时达70%以上。在精度比较上,离线建立的神经网络输出与基于气动热力学建立的部件级模型基本精度一致,具有一定的实际使用价值。 A turbofan engine airborne model is established using BP neural network to meet the engineering requirements of the engine.This article uses a component level model to establish two component"input parameter output parameter"datasets,and uses BP neural network algorithm to train the datasets to establish a BP neural network that can replace some rotating components and all tail nozzles.And the established airborne model was simulated and verified at the design point state.The results showed that the offline neural network model of the fan component saved about 40%of the time compared to the thermodynamic model,the offline neural network model of the compressor component saved about 50%of the time compared to the thermodynamic model,and the tail nozzle component saved over 70%of the time.In terms of accuracy comparison,the output of the offline neural network is consistent with the basic accuracy of the component level model based on aerodynamics,which has certain practical value.
作者 陈前景 邹泽龙 滕家柱 徐天润 彭瑞轩 鲁峰 CHEN Qianjing;ZOU Zelong;TENG Jiazhu;XU Tianrun;PENG Ruixuan;LU Feng(Aero Engine Academy of China,Beijing 101399;State Key Laboratory of Mechanics and Control for Aerospace Structures,Nanjing University of Aeronautics and Astronautics,Nanjing Jiangsu 210016)
出处 《软件》 2023年第6期57-61,共5页 Software
基金 航空发动机及燃气轮机基础科学中心项目(P2022-B-V-002-001)。
关键词 涡扇发动机 部件级模型 BP神经网络 turbofan engine component level model BP neural network
  • 相关文献

参考文献6

二级参考文献32

  • 1曹源,金先龙,孟光.航空发动机系统级仿真研究的回顾与展望[J].航空动力学报,2004,19(4):562-571. 被引量:14
  • 2李家瑞,孙健国,张绍基.航空发动机总体性能数学模型的1种收敛算法[J].航空发动机,2005,31(4):48-50. 被引量:5
  • 3徐刚,博士学位论文,1995年
  • 4李松林,孙健国,李健民,唐世建.求解涡扇发动机数学模型的有限域搜索方法[J].航空动力学报,1997,12(3):276-278. 被引量:19
  • 5Goldberg D E. Genetic Algorithms in Search,Optimization and Machine Learning[M].New York:Addison-Wesley Publishing Company,Inc,1989.
  • 6Lawrence D. Handbook of Genetic Algorithms[M].New York:Van Nostrand Reinhold,1991.
  • 7Michalewicz Z.Genetic Algorithms + date structure = evolution programs [M]. New York:Springer-Verlag,1994.
  • 8Visser W P J, Broomhead M L. GSP: A generic object-oriented gas turbine simulation environment[ R]. NLR- TP-2000.
  • 9Sellers James F,Daniele Carl J. DYNGEN-A program for calculating steady state and trancient performance of turbojet and turbofan engines[ R] . NASA TN D-7901, 1975.
  • 10程云鹏.矩阵论[M].西安:西北大学出版社,2000..

共引文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部