期刊文献+

基于熵产理论的三维涡激振动低速水流能俘能分析

ENERGY CAPTURE ANALYSIS OF THREE-DIMENSIONAL VORTEX-INDUCED VIBRATION OF LOW-SPEED WATER FLOW BASED ON ENTROPY PRODUCTION THEORY
下载PDF
导出
摘要 以刚性圆柱作为俘能结构,通过强流固耦合数值方法模拟俘能结构在低速水流环境下的三维涡激振动,对共振约化速度(U_(r)=2~12)范围内进行俘能结构的俘能大小及俘能效率分析。为获得俘能结构三维尾流对俘能大小的影响,采用熵产理论并结合尾流特性以捕捉俘能结构尾涡的能量损失来源及分布,获得不同振动分支下俘能大小与尾流耗散间的关系。结果表明,基于熵产理论的能量损失分析可准确捕捉到俘能结构的能量耗散趋势。黏性熵产主要发生在圆柱表面,湍流熵发生在耗散率较大的尾流区。随着约化速度的增加,上端分支内,当U_(r)=6时俘能结构的俘能效率最大达到30.5%,俘能结构俘获的水动能增加,圆柱表面的黏性熵损耗和圆柱周围及尾流区湍流熵产损失也增加,俘能结构表面的黏性熵产损失和尾流区湍流熵产损失增大成为俘能效率下降的主要原因。 In this paper,the rigid cylinder is used as the energy-capture structure,and the three-dimensional vortex-induced vibration of the energy-captured system in the low-speed water flow environment is simulated by the strong fluid-solid coupling numerical method.The captured energy quantity and the energy capture efficiency of the capturing structure is analyzed in the range of resonance reduction velocity(U_(r)=2-12).To obtain the effect of the three-dimensional wake of the energy captured structure on the captured energy,the entropy production theory and the wake characteristics are used to capture the energy loss source and distribution of the wake vortex of the energy capture structure,and the relationship between capture energy and wake dissipation under different vibration branches are obtained.The results show that the energy loss analysis based on the entropy production theory can accurately capture the energy dissipation trend of the energy-harvesting structure.The viscous entropy production mainly occurs on the cylindrical surface,and the turbulent entropy occurs in the wake region,where the dissipation rate is more significant.With the increase of the reduced velocity,the kinetic energy of water captured by the energy capture structure in the upper branch increases,the viscous entropy loss on the cylinder surface and the turbulent entropy production loss around the cylinder and in the wake region also increases,and the viscous entropy production loss on the surface of the energy capture structure increases.The increase of turbulent entropy production loss in the wake region is the main reason for the decrease in energy capture efficiency.
作者 李俊 罗竹梅 郭涛 杨涛 高所明 Li Jun;Luo Zhumei;Guo Tao;Yang Tao;Gao Suoming(School of Metallurgy and Energy Engineering,Kunming University of Science and Technology,Kunming 650093,China;Department of Engineering Mechanics,Faculty of Civil Engineering and Mechanics,Kunming University of Science and Technology,Kunming 650500,China;Kunming Branch of Shenzhen Water Planning and Design Co.,Ltd.,Kunming 650032,China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2023年第6期45-52,共8页 Acta Energiae Solaris Sinica
基金 国家自然科学基金(520609010,51969009)。
关键词 海洋能 俘能结构 涡激振动 流固耦合 能量耗散 熵产理论 ocean energy energy capture structure vortex-induced vibration fluid-structure interaction energy dissipation entropy generation theory
  • 相关文献

参考文献3

二级参考文献17

  • 1Barrero-Gil A, Alonso G, Sanz-Andres A. Energy harvesting from transverse galloping [ J ]. Journal of Sound and Vibration, 2010, 329 (14) :2873 - 2883.
  • 2Bernitsas M M, Raghawan Y, Ben-Simon E M H, et al. VIVACE (vortex induced vibration for aquatic clean renewable energy from fluid flow [ J ]. Journal of Offshore Mechanics and Arctic Engineering, 2008, 130 : 041101.
  • 3Yoshiki, Nishi. Power extraction from vortex-induced vibration of dual mass system [ J ]. Journal of Sound and Vibration, 2012 : 1 - 14.
  • 4Bernitsas M M, Ben-Simon Y, Raghavan K, et al. The VIVACE converter: model tests at high damping and Reynolds number around105 [ J ]. Journal of Offshore Mechanics and Arctic Engineering, 2009, 131:011102.
  • 5Raghavan K, Bernitsas M M. Experimental investigation of Reynolds number effect on vortex induced vibration of rigid circular cylinder on elastic supports[ J]. Ocean Engineering, 2011,38:719 - 731.
  • 6Lee J H, Bernitsas M M. High-damping, high-Reynolds VIV tests for energy harnessing using the VIVACE converter [ J ]. Ocean Engineering 2011,38 : 1697 - 1712.
  • 7Guilmineau E, Queutey P. Numerical simulation of vortex- induced vibration of a circular cylinder with low mass- damping in a turbulent flow [ J ]. Journal of Fluids and Structures, 2004, 19 : 449 - 466.
  • 8Khalak A, Williamson C H K. Motions, forces and mode transitions in vortex-induced vibration at low mass-damping [ J]. Journal of Fluids and Structures, 1999, 13 : 813 - 851.
  • 9Govardhan R, Williamson C H K. Modes of vortex formation and frequency response of a freely vibrating cylinder [ J ]. Journal of Fluids Mechanics, 2000, 420 : 85 - 130.
  • 10何长江,段忠东.二维圆柱涡激振动的数值模拟[J].海洋工程,2008,26(1):57-63. 被引量:18

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部