期刊文献+

基于改进BES-LSSVM光伏组件积灰预测 被引量:5

ASH DEPOSITION PREDICTION OF PHOTOVOLTAIC MODULES BASED ON IMPROVED BES-LSSVM
下载PDF
导出
摘要 为探究气象因素与光伏组件积灰之间的关系,提出一种基于改进秃鹰算法(IBES)优化的最小二乘支持向量机(LSSVM)的积灰预测模型。该模型以降雨量、风速等气象因素作为输入,对组件面积灰进行预测。通过引入高斯-柯西变异算子对种群最优个体进行变异,择优选取进入下一次迭代,改善原始秃鹰算法收敛速度慢、易陷入局部最优的缺点。将改进算法寻优得到的参数代入模型,仿真后与其他种类算法模型进行对比,结果表明IBES-LSSVM积灰预测模型预测误差更小,拟合效果更好。最后根据累计积灰计算发电损失,结合降雨情况对组件清洗进行指导。 In order to explore the relationship between meteorological factors and photovoltaic panel ash deposition,an ash deposition prediction model based on least squares support vector machine(LSSVM)optimized by improved bald eagle algorithm(IBES)is proposed.The model uses meteorological factors such as rainfall and wind speed as input to predict the ash content of the plate area.By introducing the Gauss-Cauchy mutation operator to mutate the optimal individual of the population,the optimal selection is entered into the next iteration,which improves the shortcomings of the original vulture algorithm,such as slow convergence speed and easy to fall into local optimum.The parameters obtained by the improved algorithm are substituted into the model,and compared with other kinds of algorithm models after simulation.The results show that the prediction error of the IBES-LSSVM ash accumulation prediction model is smaller and the fitting effect is better.Finally,the power generation loss is calculated according to the cumulative ash accumulation,and the component cleaning is guided according to the rainfall conditions.
作者 高瑜 康兴国 周少迪 冯小静 王寅清 孔晓龙 Gao Yu;Kang Xingguo;Zhou Shaodi;Feng Xiaojing;Wang Yinqing;Kong Xiaolong(School of Electrical and Control Engineering,Xi’an University of Science and Technology,Xi’an 710699,China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2023年第6期213-219,共7页 Acta Energiae Solaris Sinica
基金 榆林市科学技术局产学研合作项目(CXY-2020-033)。
关键词 光伏组件 积灰 降雨 支持向量机 秃鹰算法 photovoltaic modules ash rainfall support vector machine bald eagle search
  • 相关文献

参考文献8

二级参考文献63

共引文献88

同被引文献53

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部