期刊文献+

基于轨迹数据的出租车运行模式识别及效益分析 被引量:2

Identification of Taxi Operation Patterns and Benefit Analysis Based on Trajectory Data
原文传递
导出
摘要 基于上海市出租车轨迹数据,使用Hadoop分布式计算框架对出租车GPS数据进行处理,以出租车为对象提取其轨迹,并计算出租车的载客平均距离、轨迹中心与城区中心距离与回转半径3个指标,采用k-means++模型分类并定义5种出租车运行模式。通过对比不同时间划分标准下各运行模式出租车的时间、里程载客率与收入情况,分析各类出租车在各时间段的运行效益与运行特征。 Based on the taxi trajectory data in Shanghai,this paper uses the Hadoop distributed computing framework to process the taxi GPS data,extracts the taxi trajectory as the object,and calculates the taxi’s average distance to carry passengers,the distance between the center of the trajectory and the center of the city and the radius of gyration,and uses the k-means++model to classify and define five taxi operation patterns.By comparing the operation time,spatial passenger load rate and revenue of each operation pattern taxis under different time division criteria,the operation efficiency and operation characteristics of each type of taxis in each time period are analyzed.
作者 蔡宇阳 李伯钊 牛彦芬 汪有为 CAI Yuyang;LI Bozhao;NIU Yanfen;WANG Youwei(School of Geography and Information Engineering,China University of Geosciences,Wuhan 430074,China;School of Resources and Environmental Sciences,Wuhan University,Wuhan 430079,China;Beijing PalmGo InfoTech Co.,Ltd.,Beijing 100022,China)
出处 《测绘地理信息》 CSCD 2023年第4期146-150,共5页 Journal of Geomatics
基金 国家重点研发计划(2018YFF0215006)。
关键词 出租车轨迹数据 运行模式识别 时空特征挖掘 出租车效益分析 Taxi trajectory data operation pattern identification spatio-temporal feature mining Taxi efficiency analysis
  • 相关文献

参考文献4

二级参考文献29

  • 1Zhang D,Guo B,Yu Z. The emergence of social and community intelligence[J].Computer,2011,(07):21-28.
  • 2Ratti C,Pulselli R M,Willians S,Frenchman D. Mobile Landscapes:using location data from cell phonnes for urban analysis[J].Envrionment and Planning B:Planning and Design,2006,(05):727-748.
  • 3Zhu H,Zhu Y,Li M,Ni L. SEER:metropolitan-scale traffic perception based on lossy sensory data[A].2009.217-225.
  • 4Calabrese F,Pereira F C,Lorenzo G D,Liu L,Ratti C. The geography of taste:analyzing cell-phone mobility and social[A].2010.22-37.
  • 5Girardin F,Blat J,Calabrese F,Fiote F,Ratti C. Digital Footprinting:uncovering tourists with user-generated content[J].IEEE Pervasive Computing,2008,(04):36-43.
  • 6Ahas R,Aasa A,Silm S,Tiru M. Mobile positioning data in tourism studies and monitoring:case study in Tartu,Estonia[A].2007.119-128.
  • 7Girardin F,Vaccari A,Gerber A,Biderman A Ratti C. Quantifying urban auractiveness from the distribution and density of digital footprints[J].International Journal of Spatial Data Infrastructures Research,2009.175-200.
  • 8González M,Hidalgo C,Barabasi A. Understanding individual human mobility patterns[J].Nature,2008.779-782.
  • 9McNamara L,Mascolo C,Capra L. Media sharing based on collocation prediction in urban transport[A].2008.58-69.
  • 10Froehlich J,Neumann J,Oliver N. Sensing and predicting the pulse of the city through shared bicycling[A].2009.1420-1426.

共引文献61

同被引文献31

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部