期刊文献+

一种交互网络特征反馈标记方法研究

Research on a feature feedback labeling method for interactive network
下载PDF
导出
摘要 面对海量的网络数据,传统方法在检索信息时需要庞大的精力和时间,因此,提出基于加权遗传算法的交互网络特征反馈标记方法。分析交互网络数据处理流程,根据分析结果,利用加权遗传算法对特征加权计算,找出近似全局最优解;使用户对文本特征或者图像实例完成标记,基于用户的标记与未标记情况构建双重监督图,建立实数值推测函数并计算,获取双重监督图中未标记的结点。仿真实验验证了方法误差较小、检索精度较高,可在大量的数据中快速找到目标内容。 When facing with massive network data,traditional methods need to pay a lot of energy and time to retrieve information.Therefore,this paper proposes an interactive network feature feedback labeling method based on weighted genetic algorithm.The whole process of data processing of interactive network is analyzed.According to the results,the weighted genetic algorithm is used to calculate the weight of features to find the approx-imate global optimal solution.After that,users can mark the text features or image instances,and the algorithm could build a double supervision graph based on the marked and unlabeled situation of users,and then a real value inference function is built to calculate the unlabeled nodes in the double-supervised graph.The simulation results show that the method has small error and high retrieval accuracy,and can quickly find the target content in a large amount of data.
作者 欧卫红 杨永琴 OU Wei-hong;YANG Yong-qin(School of Information Engineering,Guangzhou University of Science and Technology,Guangzhou 510702,China)
出处 《信息技术》 2023年第6期71-76,共6页 Information Technology
基金 广东省应用型科技研发专项资金资助项目(2020B0-90927010) 广州科技职业技术大学校级重点课题(2021-ZR06) 广东省图书文化信息协会科研课题(GDTWKT2020-34)。
关键词 加权遗传算法 交互网络 双重监督图 实数值函数 近似全局最优解 weighted genetic algorithm interactive network double-supervised graph real valued function approximate global optimal solution
  • 相关文献

参考文献20

二级参考文献141

  • 1毛勇,周晓波,夏铮,尹征,孙优贤.特征选择算法研究综述[J].模式识别与人工智能,2007,20(2):211-218. 被引量:95
  • 2Dongre P B,Malik L G. A review on real time data stream clas- sification and adapting to various concept drift seenarios[C]// 2014 IEEE International Advance Computing Conference. 2014: 533-537.
  • 3Widmer G, Kubat M. Effective learning in dynamic environ- ments by explicit context tracking [C]// Proceedings of the Sixth European Conference on Machine Learning. Vienna, Aus- tria, 1993 : 69-101.
  • 4Last M. Online classification of nonstationary data stream [J]. Intelligent Data Analysis, 2002,6 (2) : 1-16.
  • 5罗秀,王大玲,冯时,等.一种面向周期性模式漂移的数据流分类算法[J].计算机研究与发展,2009,46(Suppl.):400-405.
  • 6Katakis I, Tsoumakas G, Vlahavas I. Tracking recurring con- texts using ensemble classifiers:an application to email filtering [J]. Knowledge and Information Systems,2010,22 (3):371-391.
  • 7Alippi C, Boracchi G, Rocheri M. An effective just-in-time adap- tive classifier for gradual concept drifts [C]//Proceedings of the 2011 International Joint Conference on Neural Networks. San Jose, USA, 2011 : 1675-1681.
  • 8Carmona J, Gavalda R. Online techniques for dealing with con- cept drift in process mining[C]//Proc. Int. Conf. IDA, 2012: 90- 102.
  • 9Du Fei,Zhang Li-qun, Ni Guang-yun. A algorithm for detecting concept drift based on context in process mining[C]//2013 Fourth International Conference on Digital Manufacturing & Automation. 2013 : 5-8.
  • 10J R P, Wil M P, et al. Dealing with concept drifts in process mi- ning[J]. IEEE Transaction on Neural Networks and Learning Systems,2014,25(1) :154-171.

共引文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部