期刊文献+

基于深度学习的PCB芯片极性检测算法 被引量:2

PCB Chip Polarity Detection Algorithm Based on Deep Learning
下载PDF
导出
摘要 印刷电路板芯片极性检测是印刷电路板缺陷检测的重要组成部分。针对传统印刷电路板芯片尤其是小型芯片的极性检测算法准确性的不足,提出一种基于深度学习的电路板芯片极性检测方法。该方法首先使用模板匹配对不同电路板上不同型号芯片进行识别定位;其次,对电路板参考图像与待测图像进行配准、灰度化、二值化,并对两幅图像进行差分处理得到差分图;最后,结合芯片识别定位结果提取差分图中的芯片区域,并采用提出的卷积神经网络实现对芯片的极性检测。实验表明,所提方法比传统方法具有更高的检测准确率,准确率可达98.26%,满足工业检测精度需求。 The polarity detection of chips on printed circuit board is an important part of circuit board defect detection. Aiming at the problem that the accuracy of the polarity detection methods for traditional chips, especailly tiny chips, needs to be improved, a printed circuit board chip polarity detection method based on deep learning is proposed. Firstly, template matching is used to identify and locate different types of chips on different circuit boards. Secondly, the testing image is registrated to the reference image, grayscale and binarization are operated on both images, then two images are subtracted to get the difference map. Finally, the chip area in the difference map is extracted, and the polarity detection of the chip is realized by using the proposed convolutional neural network. Experiments show that the method has higher detection accuracy than the traditional methods, and the accuracy of proposed method achieves 98.26 percent, reaching the requirements of industrial inspection accuracy.
作者 王猛 陈健 万佳泽 林丽 何栋炜 刘丽桑 曹新容 WANG Meng;CHEN Jian;WAN Jiaze;LIN Li;HE Dongwei;LIU Lisang;CAO Xinrong(School of Electronic,Electrical Engineering and Physics,Fujian University of Technology,Fuzhou Fujian 350118,China;Fujian Provincial Key Laboratory of Information Processing and Intelligent Control,College of Computer and Control Engineering,Minjiang University,Fuzhou Fujian 350121,China)
出处 《电子器件》 CAS 北大核心 2023年第3期764-770,共7页 Chinese Journal of Electron Devices
基金 福建省自然基金面上项目(2019J01773) 闽江学院计算机科学与技术应用型学科开放课题资助(MJUKF-JK202004)。
关键词 电路板 极性检测 深度学习 卷积神经网络 printed circuit board polarity detection deep learning convolutional neural network
  • 相关文献

参考文献11

二级参考文献152

  • 1雷小军,付庄,曹其新,赵言正.海底管道检测机器人自主缺陷定位的模糊控制研究[J].机器人,2005,27(3):252-255. 被引量:6
  • 2田原,都东,蔡国瑞,王力,张骅.Automatic Defect Detection in X-Ray Images Using Image Data Fusion[J].Tsinghua Science and Technology,2006,11(6):720-724. 被引量:8
  • 3李志敏,林越伟,黄俊,张凤阳,万睿,张晶,黄凡.PCB走线检测的预处理算法[J].光学精密工程,2007,15(2):272-276. 被引量:13
  • 4SANDRA L B, PAUL J B, CHARLES L C, et al.. Automatic solder joint inspection[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1988,10 ( 1 ) : 31 - 43.
  • 5KIM J H, CHO H S, KIM S. Pattern classification of solder joint images using a correlation neural network [J]. Eng. Applic. Intell. , 1996,9(6) :655- 669.
  • 6KIMT H, CHOT H, MOONYS, etal.. Visual inspection system for the classification of solder joints [J].Pattern Recognition, 1999,32 ( 4 ): 565- 575.
  • 7KO K W, CHO H S. Solder joints inspection using a neural network and fuzzy rule-based classification method[J]. IEEE Transactions on Electronics Packaging Manufacturing, 2000,23(2) : 93-102.
  • 8ACCIANI G , BRUNETTI G , CHIARANTONI E, et al.. An automatic method to detect missing devices in manufactured products[C].Proceedings of International Joint Conference on Neural Networks, 2005: 2324-2329.
  • 9WU H H, ZHANG X M, KUANG Y C, et al.. A real time machine vision system for solder paste inspection[C]. IEEE/-ASME International Conference on Advanced Intelligent Mechatronics , 2008: 205-210.
  • 10MICHAEL E Z, STEFANOS K G , GEORGE A R. A Bayesian framework for multilead SMD postplacement quality inspection [J]. IEEE Transactions on Systems, Man, and Cybernetics-part B : Cybernetics, 2004,34 ( 1 ) : 440- 453.

共引文献274

同被引文献51

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部