期刊文献+

基于LSTM和序列到点模型的非侵入式负荷分解技术

Non-Intrusive Load Decomposition Techniques Based on LSTM and Sequence-to-Point Models
下载PDF
导出
摘要 随着深度学习在非侵入式负荷监测技术(Non-intrusive Load Monitoring, NILM)的应用,对于负荷识别与功率分解能力有所提升,但是对于多状态用电负荷依旧存在负荷分解准确度低、算法泛化性能低、分解耗时等问题。为此,提出了一种基于LSTM和序列到点的负荷分解模型,滑动总功率数据序列来映射目标设备在功率数据窗口中点的功耗。首先,采用基于滑动窗口的事件探测算法提取激活负荷样本作为序列到点模型的输入数据;利用卷积神经网络自动提取输入负荷总功率的局部负荷特征,引入长短期记忆网络挖掘序列中点前后相关度最高的信息完成负荷辨识。为了验证模型的有效性,将所提出的模型应用于实际家庭能源数据集UK-DALE,并与目前领先的模型进行了比较,综合性能提升了28.8%,结果表明所提出的深度学习模型可以有效地提高负荷监测能力。 With the application of deep learning in non-intrusive load monitoring(NILM),the ability of load identification and power decomposition has been improved, but there are still problems such as low accuracy of load decomposition, low generalization performance of the algorithm and the decomposition being time-consuming for multi-state electricity loads. A load decomposition model based on LSTM and sequence-to-point is proposed to map the power consumption of the target device at the midpoint of the power data window by sliding the total power data sequence. Firstly, a sliding window-based event detection algorithm is used to extract the activated load samples as the input data for the sequence-to-point model. Convolutional Neural Networks is used to automatically extract the local load characteristics of the total power of the input load, and a long and short-term memory network is introduced to mine the information with the highest correlation before and after the points in the sequence to complete the load identification. To verify the effectiveness of the model, the proposed model is applied to a real household energy dataset, UK-DALE,and compared with the current leading models, and the comprehensive performance is improved by 28.8%. The results show that the proposed deep learning model can effectively improve the load monitoring capability.
作者 钱玉军 包永强 姜丹琪 张旭旭 QIAN Yujun;BAO Yongqiang;JIANG Danqi;ZHANG Xuxu(School of Electric Power Engineering,Nanjing Institute of Technology,Nanjing Jiangsu 211167,China;School of Information and Communication Engineering,Nanjing Institute of Technology,Nanjing Jiangsu 211167,China)
出处 《电子器件》 CAS 北大核心 2023年第3期841-848,共8页 Chinese Journal of Electron Devices
基金 国家自然科学基金项目(51977103)。
关键词 非侵入式负荷监测 LSTM 序列到点 滑动窗口 新型电力系统 non-invasive load monitoring LSTM S2P sliding window new power systems
  • 相关文献

参考文献12

二级参考文献90

  • 1Mario Berges,Ethan Goldman,H. Scott Matthews,Lucio Soibelman.Training Load Monitoring Algorithms on Highly Sub-Metered Home Electricity Consumption Data[J].Tsinghua Science and Technology,2008,13(S1):406-411. 被引量:2
  • 2MARCEAU M L, ZMEUREANU R. Nonintrusive load disaggregation computer program to estimate the energy consumption of major end use in residential buildings[J]. Energy Conversion & Management, 2000, 41(13): 1389 1403.
  • 3HART G W. Nonintrusive appliance load monitoring [J ]. Proceedings of the IEEE, 1993, 80(12): 1870-1891.
  • 4LEEB S B, SHAW S R, KIRTLEY J L. Transient event detection in spectral envelope estimates for nonintrusive load monitoring[J]. IEEE Trans on Power Delivery, 1995, 10(3): 1200-1210.
  • 5LAUGHMAN C, LEEK K, COX R, et al. Power signature analysis[J]. IEEE Power & Energy Magazine, 2003, 1(2):56-63.
  • 6COX R, LEEB S B, SHAW S R, et al. Transient event detection for nonintrusive load monitoring and demand side management using voltage distortion[C]// 21st Annual IEEE Applied Power Electronics Conference and Exposition, March 19-23, 2006, Dallas, USA: 7p.
  • 7FERNANDES R A S, SILVA I N D, OLESKOVICZ M. Load profile identification interface for consumer online monitoring purposes in smart grids [J ]. IEEE Trans on Industrial Informatics, 2013, 9(3): 1507-1517.
  • 8BASU K, DEBUSSCHERE V, BACHA S, et ah Nonintrusive load monitoring: a temporal muhilabel classification approach [J]. IEEE Trans on Industrial Informatics, 2015, 11(1): 262- 270.
  • 9ZHAO B, STANKOVIC L, STANKOVIC V. Blind non intrusive appliance load monitoring using graph-based signal processing[C]// 2015 IEEE Global Conference on Signal and Information Processing, December 14-15, 2015, Orlando, USA: 5p.
  • 10ZEIFMAN M, ROUTH K. Nonintrusive appliance load monitoring: review and outlook[J]. IEEE Trans on Consumer Electronics, 2011, 57(1): 76-84.

共引文献2057

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部