期刊文献+

基于AI的多组学分析方法鉴别新型冠状病毒感染和社区获得性肺炎的价值

Value of AI-based Multiomics Analysis in DifferentiatingCOVID-19 from Community-acquired Pneumonia
下载PDF
导出
摘要 目的:旨在评估基于影像组学特征和常规临床信息(包括临床症状及临床检验数据)的多组学模型在区分新型冠状病毒感染(COVID-19)和社区获得性肺炎(CAP)方面的分类性能。方法:收集奥密克戎(Omicron)变异株引起的COVID-19确诊患者和其他病毒感染引起的CAP确诊患者临床及胸部CT影像资料,基于数据集构建影像组学模型、临床特征模型、多组学模型,通过受试者工作特性曲线(ROC)分析评估每个模型的分类性能。结果:选择8个影像组学特征和7个临床特征来构建影像组学模型、临床特征模型、多组学模型。在测试集中,影像组学模型受试者工作特征曲线下面积(AUC)为0.759,临床特征模型AUC为0.853,多组学模型AUC为0.9。结论:基于AI的多组学分析方法构建的多组学模型分类性能高于影像组学模型和临床特征模型,对COVID-19和CAP的鉴别诊断具有可行性。 Objective:To assess the effectiveness of a multiomics model that combines radiomics characteristics and routine clinical information(including clinical symptoms and laboratory data)to distinguish between coronavirus disease 2019(COVID-19)and community-acquired pneumonia(CAP).Methods:Retrospective data of patients with confirmed COVID-19 caused by the Omicron variant and patients with CAP caused by other viral infections were collected,including chest CT imaging and clinical data.Radiomics,clinical features,and multiomics models were constructed using the entire dataset,and the performance of each model in distinguishing between COVID-19 and CAP was evaluated using receiver operating characteristic curve(ROC)analysis.Results:A total of 8 radiomics features and 7 clinical features were selected to construct the radiomics,clinical features,and multiomics models.The area under the subject operating characteristic curve(AUC)of the radiomics model was 0.759,that of the clinical model was 0.853,and that of the multiomics model was 0.9.Conclusions:The study suggests that AI-based multiomics model has a better performance in differentiating between COVID-19 and CAP compared with those of the radiomics and clinical features models.
作者 王晓兰 赵建华 WANG Xiaolan;ZHAO Jianhua(Graduate School,Baotou Medical College,Inner Mongolia University of Science and Technology,Baotou 014040,China;Department of Medical Imaging,Inner Mongolia People’s Hospital,Hohhot 010017,China;Inner Mongolia Medical University Inner Mongolia Clinical Medical College/Baotou Medical College Inner Mongolia Clinical Medical College,Hohhot 010017,China)
出处 《CT理论与应用研究(中英文)》 2023年第3期357-366,共10页 Computerized Tomography Theory and Applications
基金 内蒙古自治区人民医院院内基金(基于深度学习的病毒性肺炎不同临床转归胸部CT评价(2020YN08)) 包头医学院研究生教育教学改革项目(人工智能在放射影像学专业学位研究生教学中的初步应用(BYJSJG202303))。
关键词 人工智能 新型冠状病毒感染 社区获得性肺炎 影像组学 检验组学 artificial intelligence coronavirus disease 2019 community-acquired pneumonia radiomics clinlabomics
  • 相关文献

参考文献3

二级参考文献14

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部