期刊文献+

基于FMCW雷达的呼吸模式分类技术研究

Research on Respiratory Pattern Classification Technology Based on FMCW Radar
下载PDF
导出
摘要 针对当前使用调频连续波雷达的呼吸模式分类算法准确度不高的问题,本文提出一种基于一维卷积神经网络(1DCNN)结合长短时记忆(LSTM)网络的多呼吸模式分类方法。方法共分为四步:第一步,对雷达提取的呼吸信号进行预处理;第二步,使用快速傅里叶变换(FFT)与连续小波变换(CWT)提取呼吸信号特征;第三步,根据呼吸特征对五种呼吸模式信号(正常呼吸、呼吸过速、呼吸过缓、呼吸深大、呼吸暂停)打标签制作数据集;第四步,使用数据集训练网络得到模型,并使用新数据测试模型。实验结果表明,此方法分类准确度要比现有使用CNN网络方法高5%左右。 Aiming at the low accuracy of respiratory pattern classification algorithms used in frequency modulated continuous wave(FMCW)radar,this paper proposes a multi respiratory pattern classification method based on one⁃di⁃mensional convolutional neural network(1DCNN)combined with long and short term memory network(LSTM).The method has four steps:the first step is to preprocess the respiratory signal extracted by radar;the second step is to ex⁃tract the characteristics of respiratory signals by using fast fourier transform(FFT)and continuous wavelet transform(CWT);the third step is to label the five respiratory pattern signals(normal breathing,tachypnea,bradypnea,deep breathing and apnea)according to the respiratory characteristics to form a data set;the fourth step is to use the data set to train the network to get the model,and use the new data to test the model.The experimental results show that the clas⁃sification accuracy of this method is about 5%higher than that of the existing CNN network methods.
作者 漆晶 谢广智 QI Jing;XIE Guangzhi(School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出处 《雷达科学与技术》 北大核心 2023年第3期334-341,354,共9页 Radar Science and Technology
关键词 调频连续波雷达 呼吸模式分类 连续小波变换 一维卷积神经网络 长短时记忆网络 FMCW radar respiratory pattern classification CWT 1DCNN LSTM
  • 相关文献

参考文献4

二级参考文献23

  • 1席涛,杨国胜,汤池.呼吸信号检测技术的研究进展[J].医疗卫生装备,2004,25(12):26-28. 被引量:27
  • 2Lettieri C J, Eliasson A H, Andrada T,et al. Obstructive sleep apnea syndrome:are we missing an at-risk population[J]. J Clin Sleep Med, 2005,1 (4) : 381-385.
  • 3Quan S F,Gillin J C,Littner M R,et al. Sleep-related breathing disorders in aduhs:recommendations for syndrome definition and measurement techniques in clinical research .Editorials[J]. Sleep, 1999,22 : 662-689.
  • 4LI Zhen-mei, SHEN Jin,WEI Pei-yu,et al. Voltage fluctuation and fli-cker monitoring system using labVIEW and wavelet transform[J]. Journal of Computers, 2010,5 (3) : 417-424.
  • 5Rafiee J,Rafiee M A,Prause N,et al. Wavelet basis functions in biomedical signal processing[J]. Expert Systems with Applications, 2011,38:6 190-6 201.
  • 6Mallat S. A theory for multi-resolution signal decomposition :the wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989,11 (7) :674-693.
  • 7AI-Nashash H A,Thakor N V. Monitoring of global eerebralischemia using wavelet entropy rate of change[J]. IEEE Transactions on Biom- edical Engineering,2005,52(12) .2 119-2 122.
  • 8李钊,王健琪,荆西京,路国华,吕昊,李岩峰.用于生命探测的人体呼吸运动模拟系统研制[J].医疗卫生装备,2010,31(3):40-41. 被引量:7
  • 9张景川,曾周末,赖平,封皓,靳世久.基于小波能谱和小波信息熵的管道异常振动事件识别方法[J].振动与冲击,2010,29(5):1-4. 被引量:31
  • 10陈亦望,靳秀海,张品,潘育新.使用微多普勒信息识别伪装人体目标动作的新方法[J].解放军理工大学学报(自然科学版),2012,13(5):505-510. 被引量:2

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部