期刊文献+

定子模块化混合励磁永磁电机短路特性分析

Short Circuit Characteristics Analysis of Modular Stator Hybrid-Excited Permanent Magnetic Machine
下载PDF
导出
摘要 电机因短路故障会产生较大的短路电流,严重时可能烧毁定子绕组。针对混合励磁永磁电机,提出了在定子齿引入径向气隙的定子模块化结构以降低电机匝间短路电流。首先通过建立该电机的解析磁路模型,分析了短路匝数与短路位置对绕组电感的影响。其次利用Maxwell分别对所提结构与传统混合励磁永磁电机的匝间短路电流进行分析并比较。结果表明,与传统混合励磁永磁电机相比,所提出的定子模块化混合励磁永磁电机的短路电流可以降低16.38%,提升了电机的可靠性。 The motor will produce a large short circuit current when the short circuit fault occurs,which may burn the stator windings in serious cases.In order to reduce the short circuit current of the permanent magnet machine,a modular stator hybrid-excited stator slot permanent magnet(HSSPM)machine is proposed by introducing the radial flux gap on the stator teeth.Firstly,the influence of the turns and the position on the short circuit windings on induct-ance was analyzed by establishing the analytical magnetic circuit model.Secondly,the inter-turn short circuit current of the modular stator HSSPM machine and alternate teeth wound HSSPM machine was analyzed and compared by Maxwell.Compared with alternate teeth wound HSSPM machine,the short circuit current of modular stator HSSPM machine can be reduced by 16.38%,which reliability is improved.
作者 刘旭 张引引 LIU Xu;ZHANG Yin-yin(School of Electrical Engineering,Hebei University of Technology,Tianjin 300130,China)
出处 《计算机仿真》 北大核心 2023年第6期338-343,420,共7页 Computer Simulation
基金 国家自然科学基金(52077055) 河北省自然科学基金(E2018202252) 河北省人社厅(E2016100004)。
关键词 永磁电机 匝间短路 有限元仿真 容错性能 电感 Permanent magnet machine Inter-turn short circuit Finite element simulation Fault-tolerant per-formance Inductance
  • 相关文献

参考文献6

二级参考文献54

  • 1齐蓉,陈明.多电飞机容错作动系统拓扑结构分析[J].航空计算技术,2005,35(1):82-85. 被引量:4
  • 2周元钧,刘宇杰.双通道永磁同步伺服系统的容错性能[J].电工技术学报,2005,20(9):98-102. 被引量:12
  • 3Chau K T, Chan C C, Liu C. Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles[J]. IEEE Trans. Ind. Electron., 2008, 55(6): 2246-2257.
  • 4Ertugrul N, Soong W, Dostal G, et al. Fault tolerant motor drive system with redundancy for critical applications[C]. Proc. IEEE Power Electronics Specialists Conference, 2002:1457-1462.
  • 5Jack A G, Mecrow B C, Haylock J A. A comparative study of permanent magnet and switched reluctance motors for high-performance fault-tolerant applications[J]. IEEE Trans. Ind. Applicat, 1996, 32(4): 889-895.
  • 6Ouyang Wen, Lipo T A. Multiphase modular permanent magnet drive system design and realization[C]. Proc. IEEE Electric Machines and Drives Conference, 2007: 787-792.
  • 7Refaie EL A M, Jahns T M, Reddy P B, et al. Modified vector control algorithm for increasing partial-load efficiency of fractional-slot concentrated- winding surface PM machines[J]. IEEE Trans. Ind. Applieat., 2008, 44(5): 1543-1551.
  • 8Wang J, Atallah K, Zhu Z Q, et al. Modular three-phase permanent-magnet brushless machines for in-wheel applications[J]. IEEE Trans. Veh. Technol., 2008, 57(5): 2714-2720.
  • 9Chaaban F B. Determination of the optimum rotor/stator diameter ratio of permanent magnet machines[J]. Electr. Mach. Power Syst., 1994, 22(4) 521-531.
  • 10Pang Y, Zhu Z Q, Howe D. Analytical determination of optimal split ratio for permanent magnet brushless motors[J]. IEE Proc.-Electr. Power Appl., 2006, 153(1): 7-13.

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部