期刊文献+

基于卷积神经网络-深度迁移学习的岩性自动识别研究 被引量:5

Study on Automatic Recognition of Rock Lithology Based on Convolutional Neural Network and Deep Transfer Learning
下载PDF
导出
摘要 基于人工智能算法实现岩性自动和快速识别是地质界和工程界的热点和难点,对于构建智能勘察体系具有重要意义。首先,基于地质学岩石分类体系建立系统的岩石图像数据集架构,用以支持后续岩石识别研究工作,该数据集包含约13000张岩石样本图像;其次,基于卷积神经网络-深度迁移学习算法,建立端到端、图像到标签的岩石图像智能识别模型,并对模型进行训练和测试;最后,模型泛化性和现场钻孔岩芯岩性验证试验表明,构建的岩石图像智能识别模型具有快速和准确识别岩石的能力,利用该模型对12种岩石的识别准确率达到95%以上。新提出的岩石图像识别模型可为现场地质和科研工作者提供方便和快捷的工具。 Automatic and fast rock classification identification based on artificial intelligence algorithm is a hot and difficult point in the geology and engineering fields,and it is of significance to build an intelligent survey system.Firstly,a systematic rock image dataset framework was established based on the geologic rock classification system to support subsequent rock identification studies.The dataset contains about 13 000 images of rock samples.Secondly,based on the convolutional neural network-depth transfer learning algorithm,an end-to-end,image-to-label intelligent recognition model for rock image classification model was established which was further trained and tested on dataset.Finally,the generalization and field drilling core validation tests were conducted,indicating that the rock image classification recognition model has an ability to quickly and accurately identify rock.On the basis of the model,an identification accuracy of over 95% for 12 types of rocks was obtained.The proposed rock image classification recognition model provides a convenient and fast tool for field geologists and scientific researchers.
作者 熊峰 廖一凡 曹伟腾 张国华 师学明 李辉 郑洪 XIONG Feng;LIAO Yifan;CAO Weiteng;ZHANG Guohua;SHI Xueming;LI Hui;ZHENG Hong(Faulty of Engineering,China University of Geosciences(Wuhan),Wuhan 430074,China;School of Geophysics and Geomatics,China University of Geosciences(Wuhan),Wuhan 430074,China;School of Civil Engineering,Wuhan University,Wuhan 430072,China;Department of Digital Intelligence,China Railway Siyuan Survey and Design Group Co.,Ltd.,Wuhan 430063,China)
出处 《安全与环境工程》 CAS CSCD 北大核心 2023年第4期26-34,共9页 Safety and Environmental Engineering
基金 国家重点研发计划项目(2021YFB2600402) 国家自然科学基金项目(52209148)。
关键词 人工智能 岩石分类 卷积神经网络 深度迁移学习 泛化性 artificial intelligence rock classification convolutional neural network deep transfer learning generalization
  • 相关文献

参考文献21

二级参考文献165

共引文献293

同被引文献69

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部