摘要
交通流预测是智能交通系统中的一类重要问题。尽管当前交通流预测方法取得了较好的进展,但还面临2个关键挑战:(1)交通流的变化模式不仅依赖于时间维度上的历史信息,还依赖于空间维度上相邻区域的信息,如何兼顾两个维度上的变化模式;(2)时间本身具有小时、天及周等多粒度特性,如何实现多粒度下时序模式的捕捉。本文针对交通流预测的上述挑战,设计了一个多粒度时空深度回归模型(Spatial-temporal Deep Regression Model for Multi-granularity,MGSTDR),其基本思想是在多粒度时空交通流信息的基础上,对典型的差分整合移动平均自回归模型(Autoregressive Integrated Moving Average model,ARIMA)进行深度拓展,该模型在有效利用自身历史信息的同时,能兼顾相邻区域的信息,从而能够实现多粒度的时序交通流量预测。多个数据集上的实验结果表明,该模型在多粒度预测任务上优于现有的多个基准模型,尤其在小时这一粒度的预测结果上有5.66%的提升。
Traffic flow prediction is an important problem in the field of intelligent transportation systems.Most existing traffic-flow prediction methods have made good progress,which however still face the following two key challenges.(1)The underlying pattern of traffic flow depends on not only the historical information along the timeline,but also the information of spatially adjacent areas,making it a challenging problem on how to balance the two temporal-spatial patterns;(2)Due to fact that time information has the characteristic of multiple granularity,such as hour,day and week,how to capture the multi-grained temporal patterns is another challenge problem.In this paper,we design a multi-grained spatio-temporal deep regression model(MGSTDR)to address the above challenges.By extending the typical autoregressive integrated moving average model(ARIMA)on the basis of multi-grained spatio-temporal traffic flow information,the proposed model can effectively use historical information along the timeline as well as the information of adjacent regions,such that the prediction of multigrained spatio-temporal traffic flow can be performed.Experimental results on several datasets demonstrate that the proposed model outperforms existing benchmark methods on the task of multi-granularity,and particularly obtains an approximately 5.66%improvement in the hourly traffic flow prediction.
作者
温雯
刘莹
蔡瑞初
郝志峰
Wen Wen;Liu Ying;Cai Rui-chu;Hao Zhi-feng(School of Computer Science and Technology,Guangdong University of Technology,Guangzhou 510006,China;Engineering School,Shantou University,Shantou 515000,China)
出处
《广东工业大学学报》
CAS
2023年第4期1-8,共8页
Journal of Guangdong University of Technology
基金
国家自然科学基金资助项目(61976052)
广东省自然科学基金资助项目(2021A1515011965)。
关键词
多粒度
时空相关性
交通流
深度学习
自回归
multi-granularity
spatio-temporal correlation
taffic flow
deep learning
autoregressive