摘要
构造群例是群论研究的重要方面,本文研究了两个具体群例的剩余有限性.设p是任意素数,C=<c>是无限循环群,R=ZC是C上的整群环,UU(n,R)是R上的单位上三角矩阵群,其中n≥2,它是幂零类为n-1的无限秩的幂零群.本文首先证明了U(n,R)是剩余有限p-群.其次,记G=〈α〉×U(3,R),其中α=diag(c,1,c)是3阶对角矩阵.本文给出了G的结构,G是3元生成的导长为3的可解群,特别地,证明了G是剩余有限p-群.进一步地,本文构造了G的两个商群,它们均不是剩余有限的,这两个商群似乎比Hall发现的经典群例要初等具体.
Constructing examples of groups is an important aspect in the theory of groups.We will study the residual finiteness of two concrete matrix groups.Let p be a prime,let C=c be an infinite cyclic group,let R=ZC be the integral group ring over C,and let U(n,R)be the upper unitriangular group over R of order n,where n≥2,which is a nilpotent group of infinite rank of class n-1.Firstly,we prove that U(n,R)is a residually finite p-group.Secondly,let G=〈α〉×U(3,R),whereα=diag(c,1,c)is a diagonal matrix of order 3.We will study the structure of G and prove that G is a residually finite p-group,G is a 3-generated soluble group of derived length 3.Moreover,we will construct two quotient groups of G,neither of which is residually finite.These two quotient groups seem to be more elementary and concrete than the classical examples discovered by Hall.
作者
刘合国
赵静
He Guo LIU;Jing ZHAO(School of Science,Hainan University,Haikou 570228,P.R.China E-mail:ghliu@hubu.edu.cn;School of Mathematics and Statistics,Hubei University,Wuhan 430062,P.R.China)
出处
《数学学报(中文版)》
CSCD
北大核心
2023年第4期629-642,共14页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(12171142)。
关键词
幂零群
可解群
整群环
增广理想
nilpotent group
soluble group
integral group ring
augmentation ideal