摘要
本文在实Hilbert空间上研究一种关于伪单调变分不等式的新算法.该算法结合次梯度外梯度法、惯性法和黏性法.在适当的条件下,引入不同的参数来改进算法的收敛性.最后,在数值试验中与相关结果作比较,展示所提算法的有效性.
We study a new iterative algorithm for solving pseudomonotone variational inequality problems in real Hilbert spaces.The proposed algorithm combines the subgradient extragradient method,the inertial method and the viscosity method.Under appropriate conditions imposed on the parameters,we accelerate and improve the convergence of the algorithm by introducing different parameters.Finally,some numerical experiments are proposed to show the efficiency of our algorithm through comparison with related algorithms.
作者
谢忠兵
蔡钢
李肖肖
董巧丽
Zhong Bing XIE;Gang CAI;Xiao Xiao LI;Qiao Li DONG(School of Mathematical Sciences,Chongqing Normal University,Chongqing 401331,P.R.China;College of Science,Civil Aviation University of China,Tianjin 300300,P.R.China)
出处
《数学学报(中文版)》
CSCD
北大核心
2023年第4期693-706,共14页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(12171062)
重庆市自然科学基金(cstc2020jcyj-msxmX0455)
重庆市教委项目(KJZD-K201900504)
重庆市研究生科研创新项目(CYS21269)。
关键词
强收敛
次梯度外梯度法
惯性法
黏性法
变分不等式
strong convergence
subgradient extragradient method
inertial method
viscosity method
variational inequality