期刊文献+

物理学中的“降维打击”

SOLVING PHYSICAL PROBLEMS IN HIGHER DIMENSIONAL SPACE
下载PDF
导出
摘要 维度是物理学习和研究中的一个重要概念。在处理复杂物理问题时,通常采用降维的方法对问题进行简化,进而在低维空间中对简化后的问题进行分析和求解。然而在面对具体物理问题时,有时候增加系统的维度反而会使问题的分析变得更加直观和简单。本文以几个具体的物理问题为例,展示如何通过提升系统的维度来有效解决低维中遇到的一些困难。本文旨在强调“降维打击”思想在物理教学中的意义,目的在于培养学生的发散思维能力。 Dimension is an important concept in physics learning and research.In dealing with complicated physical problems,dimensionality reduction methods are often used to simplify the problem,so as to analyze and solve the simplified problem in a low dimensional space.However,when faced with specific physical problems,sometimes increasing the dimensions of the system can make the problem become more intuitive and simpler.This paper takes sev-eral specific physical problems as examples such as Gaussian integral,determinant calcula-tion,normalizing the eigenstates of the harmonic oscillator in quantum mechanics,and gener-ating functions of special functions,to demonstrate how to effectively solve the difficulties en-countered in low dimensional teaching by improving the dimensions of the system.The pur-pose of this paper is to emphasize the significance of the concept of“dimension reduced strate-gy”in physics teaching,and cultivate students􀆳divergent thinking abilities.
作者 郑华 王新刚 朱励霖 ZHENG Hua;WANG Xingang;Zhu Lilin(School of Physics and Information Technology,Shaanxi Normal University,Xi'an,Shaanxi 710119;Department of Physics,Sichuan University,Chengdu,Sichuan 610064)
出处 《物理与工程》 2023年第3期46-48,63,共4页 Physics and Engineering
基金 国家自然科学基金(11905120) 中央高校基本科研业务费专项(GK202202003)资助。
关键词 降维打击 高斯积分 矩阵行列式 谐振子 生成函数 dimension reduced strategy Gaussian integral determinant of a matrix harmonic oscillator generating function
  • 相关文献

参考文献4

二级参考文献18

  • 1孟祥国.理论物理教学中的常用积分[J].大学物理,2005,24(8):30-33. 被引量:1
  • 2曾谨言.量子力学:卷I[M].2版.北京:科学出版社,1979:451.
  • 3正竹溪,郭敦仁.特殊函数论[M].北京:科学出版社,1979:353.
  • 4[美]哈普尔C.,数学物理引论[M].北京:科学出版社,1981:186.
  • 5http ://en. wikipedia, org,/wiki/Hermite _ polynomials.
  • 6Jahnke E, Emde F, Losch F. Tables of Higher Punctions [M]. New York: McGraw-Hill Book Co. Inc., 1960: 101.
  • 7http ://en. wikipedia, org/wiki/Appell _ sequence.
  • 8Erdelyi A, et al. Higher Transcendental Functions Vol. II [M]. New York: McGraw-Hill Book Co. Inc., 1953 : 192.
  • 9高级超越函数:第Ⅱ卷[M].上海,科学技术出版社,1958:211.
  • 10Abramowitz M, Stegun I A eds. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables [ M ]. New York : Dover, 1965 : Chapter 22.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部