期刊文献+

密集结构改进双通道神经网络的遥感图像配准

REMOTE SENSING IMAGE REGISTRATION OF DUAL-CHANNEL CONVOLUTIONAL NEURAL NETWORK WITH DENSE STRUCTURE IMPORVEMENT
下载PDF
导出
摘要 针对部分传统算法对于遥感图像配准精度较低的问题,提出一种密集结构改进双通道卷积神经网络的遥感图像配准方法。对输入的图像采用密集结构改进的双通道卷积神经网络模型进行特征提取;用粒子群算法改进的随机一致性点漂移算法进行特征匹配得到仿射变换系数;使待配准图像能够根据该系数实现变换,达到配准目的。实验表明,改进算法比传统算法的配准精度平均提高了15%以上,对具有显著地貌差异的遥感图像对的配准精度可以有效地提高。 In order to solve the problem that some traditional algorithms have low accuracy in remote sensing image registration,a remote sensing image registration method of dual-channel convolutional neural network with dense structure improvement is proposed.The input image was extracted by using the dual-channel convolutional neural network model with improved dense structure,and the affine transformation coefficient was obtained by using the improved random consistency point drift algorithm of particle swarm optimization.The image to be registered could be transformed according to the coefficient to achieve the purpose of registration.The experimental results show that the registration accuracy of the improved algorithm is more than 15%higher than that of the traditional algorithm,and the registration accuracy of remote sensing images with significant geomorphologic differences can be effectively improved.
作者 王东振 陈颖 李文举 李绩鹏 Wang Dongzhen;Chen Ying;Li Wenju;Li Jipeng(College of Computer Science and Information Engineering,Shanghai Institute of Technology,Shanghai 201418,China)
出处 《计算机应用与软件》 北大核心 2023年第7期229-237,318,共10页 Computer Applications and Software
基金 国家自然科学基金项目(61976140) 上海应用技术大学协同创新基金项目(XTCX2018-17)。
关键词 遥感图像 图像配准 密集结构 双通道卷积神经网络 一致性点漂移 Remote sensing image Image registration Dense structure Dual-channel convolution neural network Consistency point drift
  • 相关文献

参考文献1

二级参考文献24

  • 1BAUMBERG A. Reliable feature matching across widely separated views [ C ]//Proc. Int. Conf. Computer Vision and Pattern Recognition. Hilton Head, USA: IEEE Com- puter Society, 2000: 774-781.
  • 2LINDEBERG T. Feature detection with automatic scale selection[ J]. International Journal of Computer Vision, 1998, 30 (2) : 79-116.
  • 3MIKOLAJCZYK K, SCHMID C. Indexing Based on Scale Invariant Interest Points [ C ]//Proc. Int. Conf. Computer Vision Vancouver. Vancouver, BC, Canada:IEEE Com- puter Society, 2001:525-531.
  • 4MIKOLAJCZYK K, SCHMID C. An Affine Invariant In- terest Point Detector[ C ]//Proc. Seventh European Conf. Computer Vision Copenhagen. Copenhagen, Denmark : Springer-Verlag Berlin Heidelberg, 2002: 128-142.
  • 5MATAS J, CHUM O, URBAN M,et al. Robust Wide Baseline Stereo from Maximally Stable Extremal Regions [C]//Proc. 13th British Machine Vision. Cardiff Uni- versity, British: British Machine Vision Association and Society, 2002:384-393.
  • 6MIKOLAJCZYK K, SCHMID C. A Performance Evalua- tion of Local Descriptors [ J ]. IEEE Trans Pattern Anal Mach Intell, 2005, 27(10) :1615-1629.
  • 7HARTLEY R, ZISSERMAN A. Multiple View Geometry in Computer Vision [ M ]. Cambridge, UK : Cambridge University Press, 2000:25-27.
  • 8MYATF D, BISHOP J M, CRADDOCK R. NAPSAC High Noise, High Dimensional Robust Estimation--It' s in the Bag [ C ]// Proc. British Machine Vision. Cardiff University, British: British Machine Vision Association and Society, 2002: 458467.
  • 9FERRARI V, TUYTELAARS T, VAN G L. Wide-base- line Multiple-view Corre-spondences [ J ]. IEEE Comp Vis and Patt Rec, 2003, 1 (2) : 718-725.
  • 10TUYTELAARS T, VAN G L. Matching Widely Separated Views Based on Affine Invariant Regions [ J ]. Int' | J Computer Vision, 2004, 1 (59) :61-85.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部