摘要
提出了一种基于重尾分布假定的部分线性变系数Tobit回归模型,并结合贝叶斯理论和MCMC算法给出了模型参数的统计推断结果。最后,数值模拟和实证分析表明,与正态分布假设下的部分线性变系数Tobit模型相比较,所提出的统计模型能够得到更稳健、更有效的统计推断结果。
This paper presents a partially linear varying coefficient Tobit regression model based on heavy-tailed distribution assumption,and then gives the statistical inference results of model parameters by combining Bayesian theory and MCMC algorithm.Finally,the results of numerical simulation and empirical analysis show that the pro-posed method can obtain more robust and effective statistical inference than that of the partial linear varying coeffi-cient Tobit model under the assumption of normal distribution.
作者
单国栋
于娟
SHAN Guodong;YU Juan(College of Science,Changchun University,Changchun 130022,China)
出处
《长春大学学报》
2023年第4期19-25,共7页
Journal of Changchun University
基金
吉林省科技厅项目(20220101026JC)。