期刊文献+

Identifying the potential transcriptional regulatory network in Hirschsprung disease by integrated analysis of microarray datasets

原文传递
导出
摘要 Objective Hirschsprung disease(HSCR)is one of the common neurocristopathies in children,which is associated with at least 20 genes and involves a complex regulatory mechanism.Transcriptional regulatory network(TRN)has been commonly reported in regulating gene expression and enteric nervous system development but remains to be investigated in HSCR.This study aimed to identify the potential TRN implicated in the pathogenesis and diagnosis of HSCR.Methods Based on three microarray datasets from the Gene Expression Omnibus database,the multiMiR package was used to investigate the microRNA(miRNA)-target interactions,followed by Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analyses.Then,we collected transcription factors(TFs)from the TransmiR database to construct the TF-miRNA-mRNA regulatory network and used cytoHubba to identify the key modules.Finally,the receiver operating characteristic(ROC)curve was determined and the integrated diagnostic models were established based on machine learning by the support vector machine method.Results We identified 58 hub differentially expressed microRNAs(DEMis)and 16 differentially expressed mRNAs(DEMs).The robust target genes of DEMis and DEMs mainly enriched in several GO/KEGG terms,including neurogenesis,cell-substrate adhesion,PI3K-Akt,Ras/mitogen-activated protein kinase and Rho/ROCK signaling.Moreover,2 TFs(TP53and TWIST1),4 miRNAs(has-miR-107,has-miR-10b-5p,has-miR-659-3p,and has-miR-371a-5p),and 4 mRNAs(PIM3,CHUK,F2RL1,and CA1)were identified to construct the TF-miRNA-mRNA regulatory network.ROC analysis revealed a strong diagnostic value of the key TRN regulons(all area under the curve values were more than 0.8).Conclusion This study suggests a potential role of the TF-miRNA-mRNA network that can help enrich the connotation of HSCR pathogenesis and diagnosis and provide new horizons for treatment.
出处 《World Journal of Pediatric Surgery》 CSCD 2023年第2期103-114,共12页 世界小儿外科杂志(英文)
基金 supported by grants from the National Natural Science Foundation of China(numbers 82071692,81770513,and 82170531) Xi’an Jiaotong University(number YXJLRH2022053) the General Project of Shaanxi Science and Technology Department(number 2022SF-133/033).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部