期刊文献+

Quantum dynamics studies on the non-adiabatic effects of H+LiD reaction

原文传递
导出
摘要 After the Big Bang,chemical reactions of hydrogen with LiH and its isotopic variants played an important role in the late stage of recombination.Moreover,these reactions have attracted the attention of experts in the field of molecular dynamics because of its simple structure.Electronically non-adiabatic effects play a key role in many chemical reactions,while the related studies in LiH2 reactive system and its isotopic variants are not enough,so the microscopic mechanism of this system has not been fully explored.In this work,the microscopic mechanism of H+LiD reaction are performed by comparing both the adiabatic and non-adiabatic results to study the non-adiabatic effects.The reactivity of R1(H+LiD→Li+HD)channel is inhibited,while that of R2(H+LiD→D+LiH)channel is enhanced when the non-adiabatic couplings are considered.For R1 channel,a direct stripping process dominates this channel and the main reaction mechanism is not influenced by the non-adiabatic effects.For R2 channel,at relatively low collision energy,the dominance changes from a rebound process to the complex-forming mechanism when the non-adiabatic effects are considered,whereas the rebound collision approach still dominates the reaction at relatively high collision energy in both calculations.The presented results provide a basis for further detailed study on this importantly astrophysical reaction system.
出处 《Frontiers of physics》 SCIE CSCD 2023年第3期183-191,共9页 物理学前沿(英文版)
基金 supported by the National Natural Science Foundation of China(Grant No.11774043).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部