期刊文献+

细纱接头机器人神经网络自适应力跟踪导纳控制

Neural Network Adaptive Force Tracking Admittance Control for Spinning Yarn Piecing Robot
原文传递
导出
摘要 环锭纺细纱工序中断纱自动接头一直是业界难题,细纱强力低易断裂、纱线张力受环境因素影响明显等因素导致机器人接头过程中纱线张力控制困难。为解决接头过程纱线张力控制问题,提出了基于交互力预测的神经网络自适应导纳控制方法。首先设计了导纳控制器参数的神经网络自适应调整策略来解决接头过程环境模型参数动态变化导致恒导纳控制器力跟踪效果差的问题;其次针对现有自适应控制器跟踪时变期望力时由于控制滞后产生的误差突变问题,提出了一种交互力预测方法,通过加入未来控制周期交互力的预测值来完成导纳控制器参数的提前调整,进而避免期望力突变时较大的力跟踪误差产生;最后进行了仿真试验,结果表明神经网络自适应控制器在动态环境下的力跟踪任务中有很好的鲁棒性,基于交互力预测的神经网络自适应控制器在动态环境下的时变期望力跟踪任务中最大误差和总体误差相比未加入交互力预测时分别降低了78.3%和29.7%,证明了所提出方法在机器人接头过程中纱线张力跟踪控制的可靠性。 The automatic joint of broken yarn in ring spinning process has always been a difficult problem in the industry.The low spinning strength is easy to break,and the yarn tension is significantly affected by environmental factors,which makes it difficult to control the yarn tension in the robot joint process.In order to solve the problem of yarn tension control in the process of robot piecing,a neural network adaptive admittance control method based on interactive force prediction is proposed.Firstly,a neural network adaptive adjustment strategy of admittance controller parameters is designed to solve the problem that the dynamic change of the parameters of the joint process environment model leads to the poor force tracking effect of the constant admittance controller.Secondly,in order to solve the problem of the sudden change of error caused by the control lag when the existing adaptive controller tracks the time-varying expected force,an interactive force prediction method is proposed,The parameters of the admittance controller are adjusted in advance by adding the predicted value of the interaction force in the future control period,so as to avoid the large force tracking error when the expected force is abruptly changed;Finally,the simulation test is carried out,the results show that the neural network adaptive controller has good robustness in the force tracking task in dynamic environment.The maximum error and overall error of the neural network adaptive controller based on interactive force prediction in the time-varying expected force tracking task under dynamic environment are reduced by 78.3%and 29.7%respectively compared with those without interactive force prediction,which proves the reliability of the proposed method in the yarn tension tracking control in the process of robot joint.
作者 李冬武 张洁 汪俊亮 徐楚桥 LI Dongwu;ZHANG Jie;WANG Junliang;XU Chuqiao(Institute of Artificial Intelligence,Donghua University,Shanghai 201620;School of Mechanical Engineering,Donghua University,Shanghai 201620;School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai 200240)
出处 《机械工程学报》 EI CAS CSCD 北大核心 2023年第11期221-231,共11页 Journal of Mechanical Engineering
基金 国家自然科学基金(52275478)资助项目。
关键词 环锭纺细纱接头机器人 导纳控制 神经网络自适应 交互力预测 ring spinning joint robot admittance control neural network adaptive interaction force prediction
  • 相关文献

参考文献4

二级参考文献36

  • 1K.E.Stirnemann,陈克彰.走向计算机集成纺纱[J].国外纺织技术(纺织分册),1990(4):36-38. 被引量:1
  • 2Li ZhiGuo, Liu JiZhan, Li PingPing. Study on the collision-mechanical properties of tomatoes gripped by harvesting robot fingers[J]. African Journal of Biotechnology, 2009, 8(24): 7000-7007.
  • 3Shuichi W, Koichi S, Keiko O. Miniature pneumatic curling rubber actuator generating bidirectional motion with one air-supply tube[J]. Advanced Robotics, 2011, 25(9/10): 1311-1330.
  • 4Morris D M, Hebbar R, Newman W S. Force guided assemblies using a novel parallel manipulator[C]// Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on, 2011: 325-330.
  • 5Rabenorosoa K, Clévy C, Lutz P. Active force control for robotic micro-assembly: Application to guiding tasks[C]// Robotics and Automation 2010 IEEE International Conference on. IEEE, 2010: 2137-2142.
  • 6Huang S, Liu Yuchi, Hsiang S. Robotic end-effector impedance control without expensive torque/force sensor[J].World Academy of Science, Engineering and Technology, International Journal of Mechanical, Aerospace, Industrial and Mechatronics Engineering, 2013, 7(7): 516-523.
  • 7Hogan N. Impedance control: An approach to manipulator: Part I-III[J]. Transactions of American Society of Mechanical Engineers, Journal of Dynamic System, Measure Control, 1985, 107(1): 1-24.
  • 8Fan Xinjian, Wang Xuelin, Xiao Yongfei. A combined 2D-3D vision system for automatic robot picking[C]// Proceedings of the 2014 International Conference on Advanced Mechatronic Systems, Kumamoto, Japan, 2014: 513-516.
  • 9杨振.机器人阻抗控制算法的参数调整研究[J].枣庄学院学报,2008,25(2):89-93. 被引量:3
  • 10龚鹄飞.环锭细纱机的发展趋势[J].纺织学报,1989,10(7):46-48. 被引量:1

共引文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部