期刊文献+

优化GAN的风电机组齿轮箱故障诊断方法 被引量:3

Fault Diagnosis Method of Wind Turbine Gearbox by Optimized GAN
原文传递
导出
摘要 针对风电机组齿轮箱故障诊断准确率低的问题,提出了一种逻辑回归与遗传算法优化生成对抗网络(GAN)的齿轮箱故障诊断方法。该方法采用逻辑回归与遗传算法优化GAN模型,首先,输入信号向量化编码通过轮盘式选择对宏基因等位交叉;然后,用最小二乘变异替换等位编码串重构表征向量,并输入卷积网络进行二次迭代;最后,构建逻辑回归辅助分类器表征决策边界,依据回归曲线实现判别器的分类与诊断。实验结果表明,所提方法的故障诊断准确率达到99.72%,证明该方法实现了样本数据的增强和诊断准确率的提高。 Aiming at the low fault diagnosis accuracy of wind turbine gearbox,a gear fault diagnosis method based on logistic regression and genetic algorithm optimized generative adversarial networks(GAN)is proposed.The method GAN model is optimized based on logistic regression and genetic algorithm,firstly,encoding the input signal to quantization coding by wheel selection on an acer for equipotential crossing,and then replaces with least⁃squares variation allelic encoded string of refactoring characterization vectors and enters the convolution network the second iteration.Finally,the method builds auxiliary classifier characterization of decision boundary logistic regression.The discriminator achieves classification and diagnosis based on regression curves.Results show that the fault diagnosis accuracy of this method is up to 99.72%,which proves that the method can enhance the sample data and improve the diagnosis.
作者 许同乐 苏元浩 孟良 兰孝升 李云凤 XU Tongle;SU Yuanhao;MENG Liang;LAN Xiaosheng;LI Yunfeng(School of Mechanical Engineering,Shandong University of Technology,Zibo 255049,China)
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2023年第3期62-66,共5页 Journal of Beijing University of Posts and Telecommunications
基金 国家自然科学基金项目(ZR2021ME221)。
关键词 生成对抗网络 遗传算法 逻辑回归 最小二乘变异 故障诊断 generative adversarial network genetic algorithm logistic regression least squares variation fault diagnosis
  • 相关文献

参考文献8

二级参考文献81

  • 1胥永刚,李强,王正英,王太勇.基于独立分量分析的机械故障信息提取[J].天津大学学报,2006,39(9):1066-1071. 被引量:21
  • 2BUTTERFIELD S, SHENG S, OYAGUE F. Windenergy's new role in supplying the world's energy: What role will structural health monitoring play[C]//The 7th International Workshop on Structural Health Monitoring, September9-11, 2009, Stanford, California: 1-8.
  • 3KOTZALAS M N , DOLL G L. Tribological advancements for reliable wind turbine performance[J]. Philosophical Transactions. Series A Mathematical, Physical, and Engineering Sciences, 2010, 368: 4829-4850.
  • 4CLANG C C, LEE J R, BANG H J. Structural health monitoring for a wind turbine system: A review of damage detection methods[J]. Measurement Science and Technology, 2008, 19: 1-20.
  • 5TANG Baoping, LIU Wenyi, SONG Tao. Wind turbine fault diagnosis based on Morlet wavelet transformation and Wigner-Ville distribution[J]. Renewable Energy, 2010, 35: 2862-2866.
  • 6ANTONI J, RANDALL R B. Unsupervised noise cancellation for vibration signals: Part i- evaluation of adaptive algorithms[J]. Mechanical Systems and Signal Processing, 2004, 18: 89-101.
  • 7FADDEN P D. A revised model for the extraction of periodic wavetbrms by time domain averaging[J]. Mechanical Systems and Signal Processing, 1987, 1(1): 83-95.
  • 8HE Qingbo, FENG Zhihua, KONG Fanrang. Detection of signal transients using independent component analysis and its application in gearbox condition monitoring[J]. Mechanical Systems and Signal Processing, 2007, 21: 2056-2071.
  • 9VON BONAU P, MEINECKE F C, KIRALY F, et al. Finding stationary sub-spaces in multivariate time series[J]. Physical Review Letters, 2009, 103(21): 214101.
  • 10BLYTHE D A J, VON BONAU P, MEINECKE F C, et al. Feature extraction for change-point detection using stationary subspace analysis[J]. 1EEE Transactions on Neural Network and Learning System, 2012, 23(4): 631-643.

共引文献221

同被引文献32

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部