期刊文献+

基于共形几何代数的一种9杆巴氏桁架位移分析

Displacement Analysis of a Nine-Link Baranov Truss Based on Conformal Geometric Algebra
原文传递
导出
摘要 基于共形几何代数,提出了一种9杆巴氏桁架位移分析的新几何建模和计算方法。在共形几何代数框架下,根据点、球、面、点对等基本几何元素的表示方法以及三角形面积的有向性,通过几何体的相交、分离和对偶运算,建立2个位移约束方程式;然后,通过一步结式消元得到该问题的一元54次方程,无增根无漏根。所提方法的优势在于2个位移约束方程的推导脱离了坐标系,且约束方程数的减少简化了方程组的消元过程。数值实例表明了所提方法的正确性,为其他9杆巴氏桁架的位移分析求解理论提供了一种新思路。 Based on conformal geometry algebra,a novel geometric modeling and computing method for the displacement analysis of a nine-link Baranov truss is proposed.Under the frame of conformal geometric algebra,in terms of the representations of the basic geometric elements such as point,sphere,surface,and point pair and the area sign of the triangle,two constraint equations are formulated by the intersection,dissection and dual operation.Then,a 54th-degree univariate equation without extraneous roots and roots loss is derived by one-step resultant elimination.The advantage of the proposed method lies in that the derivation of two constraint equations is free of coordinate and the elimination procedure is simplified due to the reduction of the number of constraint equations.At last,a numerical example is given to validate the correctness of the method.The proposed method provides a new sight for the theoretical solution of the displacement analysis for other nine-link Baranov trusses.
作者 张英 邵英奇 魏世民 廖启征 ZHANG Ying;SHAO Yingqi;WEI Shimin;LIAO Qizheng(School of Modern Post,Beijing University of Posts and Telecommunications,Beijing 100876,China)
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2023年第3期91-96,共6页 Journal of Beijing University of Posts and Telecommunications
关键词 9杆巴氏桁架 位移分析 共形几何代数 脱离坐标系 一步消元 nine-link Baranov truss displacement analysis conformal geometric algebra free of coordinate system one-step elimination
  • 相关文献

参考文献5

二级参考文献75

  • 1李洪波.共形几何代数——几何代数的新理论和计算框架[J].计算机辅助设计与图形学学报,2005,17(11):2383-2393. 被引量:36
  • 2Han L,Liao Q Z,Liang C G.Closed-form displacement analysis for a nine-link barranov truss or an eight-link assur group[J].Mechanism and Machine Theory,2000,35
  • 3Wilson C,Sadler J,Michels W.Kinematics and Dynamics of Machinery[M].New York:Harper and Row,1983
  • 4Havel T. Geometric Algebra and Mbius Sphere Geometry as a Basis for Euclidean Invariant Theory[M]. White N ed., In: Invariant Methods in Discrete and Computational Geometry, Dordrecht: Kluwer, 1994. 245~256.
  • 5Mourrain B, Stolfi. Computational Symbolic Geometry[M]. White N ed., In: Invariant Methods in Discrete and Computational Geometry, Dordrecht: Kluwer, 1994. 107~140.
  • 6Hestenes D. The design of linear algebra and geometry[J]. Acta Applicandae Mathematicae, 1991, 23: 65~93.
  • 7Hestenes D. Invariant body kinematics II: Reaching and neurogeometry[J]. Neural Networks, 1994, 7(1): 79~88.
  • 8White N. A tutorial on Grassmann-Cayley Algebra[M]. White N ed., In: Invariant Methods in Discrete and Computational Geometry, Dordrecht: Kluwer, 1994. 93~106.
  • 9Hestenes D. New Foundations for Classical Mechanics[M]. Dordrecht: Kluwer, 1987.
  • 10Li Hongbo. Clifford Algebras and Geometric Computation[M]. Chen F, Wang D eds., In: Geometric Computation, Singapore: World Scientific, 2004. 221~247.

共引文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部