期刊文献+

糖醇类相变材料热稳定性研究进展

Research progress in thermal endurance of sugar alcohols phase change materials
下载PDF
导出
摘要 糖醇类普遍具有较高的熔化焓值,比起常用无机和其他有机材料综合性能凸显而被作为中温相变候选材料备受关注。但是目前糖醇类作为相变材料在工程实际应用却很少,其主要原因除了过冷度大,导热性能低以外,糖醇类熔化焓的热稳定性是决定其应用的关键基础因素,而之前多数研究对此关注度不够。因此,重点围绕对糖醇类熔化焓热稳定性的相关研究,阐述了糖醇类熔化焓在储热过程中衰减的原因,相关机理分析,提升熔化焓热稳定性的方法,熔化焓动力学预测模型对熔点调控延长糖醇类相变材料预期使用寿命的相关研究进展,为重新评估糖醇类作为相变材料的适用性提供了思路和方法,也为糖醇类实现工业应用提供了研究方向。 Sugar alcohols as a type of intermediate temperature phase change materials(PCMs)have been attracted considerable attention in thermal storage for their good comprehensive performances comparing that with inorganic and other organic materials base on their higher fusion enthalpy.However,there are few industrial applications of sugar alcohols as PCMs at present.The main reasons except their ubiquitous defects,such as severe supercooling,relative low thermal conductivity,the thermal endurance of the fusion enthalpy is a key fundamental factor in their practical application,which is little attention paid to that by most of previous studies.In this article,the research progress in focusing on thermal endurance of the enthalpy for sugar alcohols,such as the causes of degradation,related mechanism,experimental measures for improvement,kinetics-predictive model and melting point regulation for lifetime expectancy were reviewed in recent years.It provides ideas and methods for reevaluating the feasibility of sugar alcohols as PCMs,and also provides a research direction for their practical application.
作者 库尔班江·乌丝曼 戴晓业 史琳 WUSIMAN Kuerbanjiang;DAI Xiaoye;SHI Lin(Department of Energy and Power Engineering,Tsinghua University,Beijing 100084,China;School of Electrical Engineering,Xinjiang University,Urumqi 830046,China)
出处 《功能材料》 CAS CSCD 北大核心 2023年第7期7042-7049,7114,共9页 Journal of Functional Materials
基金 国家自然科学基金项目(52176011)。
关键词 糖醇类 相变材料 热稳定性 熔化焓 熔点调控 sugar alcohols PCMs thermal endurance fusion enthalpy Melting point regulation
  • 相关文献

参考文献7

二级参考文献61

  • 1葛志伟,叶锋,Mathieu Lasfargues,杨军,丁玉龙.中高温储热材料的研究现状与展望[J].储能科学与技术,2012,1(2):89-102. 被引量:44
  • 2郭茶秀,张务军,魏新利,王定标.板式石蜡储热器传热的数值模拟[J].能源技术,2006,27(6):243-248. 被引量:9
  • 3Tofield B C. Materials for energy conservation and storage[J], Appl. Energ.,1981,8: 89-142.
  • 4Kearney D,Kelly B,Nava P,Kelly B. Assessment of amolten salt heat transfer fluid in a parabolic trough solarfield [ J ]. ASME J. Sol. Energ. Eng. , 2003,125:170-176.
  • 5Pacheco J E. Final test and evaluation results from the solartwo project [ R ]. New Mexico: Sandia NationalLaboratories,2002.
  • 6Geyer M, Herrmann U,Sevilla A, Nebrera J A, Zamory AG.Dispatchable solar electricity for summerly peak loadsfrom the solar thermal projects Andasol-1 and Andasol-2//13th SolarPACES Symposium [C]. Spain, 2006.
  • 7Medrano M,Gil A. Martorell I,Potau X, Cabeza LF.State of the art on high temperature thermal energystorage for power generation ( II ): Case studies [J].Rene-w. Sust. Energ. Rev.,2010,14 (1): 56-72.
  • 8Delameter W R,Bergan N E. Review of the molten saltelectric experiment [ R]. New Mexico; Sandia NationalLaboratories,1986.
  • 9Alexander J Jr,Hindin S G. Phase relations in heat transfersalt systems [J]. Ind. Eng. Chem.,1947, 39:. 1044-1049.
  • 10Kirst W E,Nagle W M, Castner J B. A new heat transfermedium for high temperatures [J]. Trans. Amer. Inst.Chem. Eng. , 1940, 36: 371-390.

共引文献129

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部