期刊文献+

波方程与欧拉伯努利板方程耦合系统的全局吸引子

Global Attractor for a Coupled System of Wave and Euler-Bernoulli Plate Equation with Boundary Weak Damping
下载PDF
导出
摘要 该文研究了黎曼流形上半线性波方程与欧拉伯努利板方程耦合系统的长时间性态,该系统具有边界耗散结构.在逃逸向量场存在性假设下利用乘子方法证明了原耦合系统全局紧吸引子的存在性,该存在性与黎曼度量的曲率性质有关. In this paper,we consider the longtime behavior for a coupled system consisting of the semi-linear wave equation with nonlinear boundary dissipation and the Euler-Bernoulli plate equation on a Riemannian manifold.It is shown that the existence of global and compact attractors depends on the curvature properties of the metric on the manifold by using the multiplier method and the hypothesis of escape vector field.
作者 彭青青 张志飞 Peng Qingqing;Zhang Zhifei(School of Mathematics and Statistics,Huazhong University of Science and Technology,Wuhan 430074;Hubei Key Laboratory of Engineering Modeling and Scientific Computing,Huazhong University of Science and Technology,Wuhan 430074)
出处 《数学物理学报(A辑)》 CSCD 北大核心 2023年第4期1179-1196,共18页 Acta Mathematica Scientia
关键词 全局吸引子 波/板耦合 几何乘子法 非线性边界耗散 Global attractor Coupled wave/plate equation Geometric multiplier method Nonlinear boundary dissipation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部