期刊文献+

基于高斯分布的插值型细分方法

Interpolatory subdivision scheme based on Gaussian distribution
下载PDF
导出
摘要 为了通过设置初始点的协方差矩阵调整极限曲线(曲面)形状,提出基于高斯分布的插值型细分方法。首先,介绍了高斯分布的几何特征。然后,根据形状需求,设定初始点处的切、法向和特征值大小,并在每一点设置相应的初始协方差矩阵。最后,在每一步细分中,由旧点和旧点处的协方差矩阵计算新点和新点处的协方差矩阵,形成新的带有协方差矩阵的细分多边形(网格),依次迭代得到极限曲线(曲面)。数值算例表明,相比线性插值细分算法,所提算法易于控制极限曲线(曲面)的形状。在实际运用中,该算法能得到曲率较好的插值曲线,同时也可以根据需求构造尖点、折痕等特征。 In order to adjust the shape of limit curve(surface)by setting covariance matrix of initial points,an interpolatory subdivision scheme based on Gaussian distribution was proposed.Firstly,introduction of the geometric characteristic of Gaussian distribution.Secondly,determination of the tangent,normal and eigenvalues at the initial point appropriately according to the shape requirements,and the corresponding covariance matrix is set at each point.Finally,in each step of subdivision,new points and their covariance matrix are calculated by old points and their covariance matrix,and a new subdivision polygon(grid)with covariance matrix is formed.Limit curve(surface)is obtained by iteration.Numerical examples show that,compared with the linear interpolatory subdivision scheme,the shape of the limit curve(surface)is easy to be controlled via the proposed scheme.In practical applications,this scheme can obtain the interpolatory curve with good curvature,and can also construct the characteristics of cusp and crease according to the demand.
作者 周元迪 李亚娟 邓重阳 ZHOU Yuandi;LI Yajuan;DENG Chongyang(School of Sciences,Hangzhou Dianzi University,Hangzhou 310018,China)
出处 《中国科技论文》 CAS 北大核心 2023年第7期729-734,共6页 China Sciencepaper
基金 国家自然科学基金资助项目(61872121)。
关键词 高斯分布 协方差矩阵 插值 细分方法 Gaussian distribution covariance matrix interpolation subdivision scheme
  • 相关文献

参考文献2

二级参考文献16

  • 1郑红婵,叶正麟,赵红星.双参数四点细分法及其性质[J].计算机辅助设计与图形学学报,2004,16(8):1140-1145. 被引量:30
  • 2骆岩林,汪国昭.生成曲线的有理稳定细分方法[J].高校应用数学学报(A辑),1998,13(1):61-66. 被引量:8
  • 3施法中.权因子、参数变换与有理二次Bezier曲线参数化[J].航空学报,1994,15(9):1151-1154. 被引量:8
  • 4蔡志杰.变参数四点法的理论及其应用[J].数学年刊(A辑),1995,1(4):524-531. 被引量:10
  • 5Chaikin G. An algorithm for high speed curve generation [J]. Computer Graphics and Image Processing, 1974, 3(4): 346~349
  • 6Dyn N, Levin D, Gregory J A. A 4-point interpolatory subdivision scheme for curve design [J].Computer Aided Geometric Design, 1987, 4(4): 257~268
  • 7Dyn N, Gregory J A, Levin D. Analysis of uniform binary subdivision schemes for curve design [J].Constructive Approximation, 1991, 7(2): 127~147
  • 8Dyn N. Subdivision Schemes in Computer-Aided Geometric Design [M].In: Light W, ed. Advances in Numerical Analysis, Vol. 2. Oxford: Clarendon Press, 1992. 36~104
  • 9Cavaretta A S, Dahmen W, Micchelli C A. Stationary subdivision [J].Memoirs of the American Mathematical Society, 1991, 93(453): 1~186
  • 10Cai Zhijie. Convergence, error estimation and some properties for four-point interpolation subdivision scheme [J].Computer Aided Geometric Design, 1995, 12(5): 459~468

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部