摘要
有限的能耗和频谱资源并不能满足日益增长的通信需求,以网络系统能耗最小和网络资源利用率最大化为目标,联合用户时延、数据速率、计算资源需求提出基于强化学习的无线资源优化管理策略。仿真表明,提出的方案有效降低接入点切换次数和降低在高业务到达率情况下的平均接入时延,从而降低切换拥塞率,提升网络的平均负载,从而提升网络无线接入性能。
Limited energy and spectrum resources are insufficient to meet the ever-growing communication demands.To minimize network energy consumption and maximize resource utilization,this paper proposes a reinforcement learning-based wireless resource optimization management strategy that jointly considers user latency,data rate,and computation resource requirements.Simulation results demonstrate the effectiveness of the proposed approach in reducing access point switching and average access latency under high traffic arrival rates,thereby decreasing switch congestion and improving network average load,consequently enhancing the wireless access performance of the network.
作者
林能波
陈青霞
郭俊滨
陈柱
方玉
叶绍雄
LIN Nengbo;CHEN Qingxia;GUO Junbin;CHEN Zhu;FANG Yu;YE Shaoxiong(China Information Technology Designing&Consulting Institute Co.,Ltd,Qingyuan Branch,Qingyuan 511500,China)
出处
《移动通信》
2023年第7期85-91,共7页
Mobile Communications
基金
2022年中国联通广东省分公司自研承载网综合应用软件研发(W91W220F3A0001)。
关键词
天空地一体化
无线资源管理
强化学习
space-air-ground integration
radio resource management
reinforcement learming