摘要
Many MXenes are efficient catalysts for MgH_(2)hydrogen storage material.Nevertheless,the synthesis of MXenes should consume a large amount of corrosive HF to etch out the Al layers from the transition metal aluminum carbides or nitrides(MAX) phases,which is environmentally unfriendly.In this work,Ti_(3)AlCN MAX without HFetching was employed directly to observably enhance the kinetics and the cycling stability of MgH_(2).With addition of10 wt% Ti_(3)AlCN,the onset dehydrogenation temperature of MgH2 was dropped from 320 to 205℃,and the rehydrogenation of MgH2 under 6 MPa H2 began at as low as50℃.Furthermore,at 300℃,it could provide 6.2 wt% of hydrogen in 10 min.Upon cycling,the composite underwent an activation process during the initial 40 cycles,with the reversible capacity increased from 4.7 wt% to 6.5 wt%.After that,the capacity showed almost no attenuation for up to 100 cycles.The enhancing effect of Ti_(3)AICN on MgH_(2) was comparable to many MXenes.It was demonstrated that Ti_(3)AICN did not destabilize MgH_(2) but acted as an efficient catalyst for MgH_(2).Ti_(3)AICN was observed to be the active sites for the nucleation and growth of MgH_(2)and might also help in dissociation and recombination of hydrogen molecules.Such two factors are believed to contribute to the improvement of MgH_(2).This study not only provides a promising strategy for improving the hydrogen storage performances of MgH_(2) by using noncorrosive MAX materials,but also adds evidence of nucleation and growth of MgH_(2) on a catalyst.
出处
《Rare Metals》
SCIE
EI
CAS
CSCD
2023年第6期1923-1934,共12页
稀有金属(英文版)
基金
financially supported by the Science and Technology Department of Guangxi Zhuang Autonomous (No.GuiKeAD21238022)
the Natural Science Foundation of Guangxi Province (No.2019GXNSFBA185004)
National Natural Science Foundation of China (Nos.52001079,51961005 and 52261038)。