期刊文献+

基于YOLOv5m改进模型的煤矸识别方法 被引量:1

Identification Method of Coal and Gangue Based on YOLOv5m Improved Model
下载PDF
导出
摘要 井下煤矸识别分选是煤矿智能化开采的重要环节。井下煤矸识别存在样本间相似度高、处于叠加状态难以识别及现有的图像识别方法鲁棒性差、精度低等问题。提出一种基于YOLOv5m改进模型的煤矸识别方法,通过增加SE模块调整网络架构、改进边界损失函数、采用DIOU-NMS对YOLOv5m模型进行改进,并进行了模型的测试。测试结果表明:YOLOv5m改进模型识别精度达96.4%,描框准确度得到了提高,且能够有效识别叠加状态的煤与矸石,避免漏检现象,提高了模型的实用性。 Underground coal gangue identification and separation is an important part of intelligent mining of coal mine.Underground coal gangue recognition has some problems,such as high similarity between samples,difficult to identify in superposition state,poor robustness,low accuracy of existing image recognition methods,etc.An approach is proposed based on YOLOv5m improved model to identify coal and gangue.The network architecture was adjusted by adding SE attention module,the boundary loss function was improved,and the DIOU-NMS was used to improve the YOLOv5m model,and the accuracy of the model was tested.The test results show that the recognition accuracy of YOLOv5m improved model reaches 96.4%,the accuracy of tracing frame is improved,and it can effectively identify coal and gangue in superposition state,avoid missing detection,and improve the practicability of the model.
作者 常枫懿 赵国贞 CHANG Fengyi;ZHAO Guozhen(College of Mining Engineering,Taiyuan University of Technology,Taiyuan 030024,China;Key Laboratory of Insitu Property-improving Mining of Ministry of Education,Taiyuan University of Technology,Taiyuan 030024,China)
出处 《煤炭技术》 CAS 北大核心 2023年第7期10-14,共5页 Coal Technology
基金 国家自然科学基金资助项目(51904199)。
关键词 煤矸识别 YOLOv5m 损失函数 NMS 注意力机制 coal and gangue identification YOLOv5m loss function NMS attention mechanism
  • 相关文献

参考文献11

二级参考文献131

共引文献452

同被引文献22

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部