摘要
煤矸智能分选对提高原煤分选效率,降低工人劳动强度具有重要意义,也是实现煤矿智能化建设中重要环节之一。设计了基于机器视觉的煤矸分拣机器人教学科研实验平台,该实验平台由Delta并联机器人、图像采集设备、抓取机构和传送带组成。通过工业相机获取煤矸图像进行预处理,并提取煤矸图像的灰度与纹理特征信息,采用支持向量机(SVM)进行煤矸数据集训练与分类检测识别。最终,利用该实验平台进行了机器人标定和煤矸图像识别分拣实验,验证了该实验平台的可行性。
The intelligent sorting of coal gangue is of great significance to improve the sorting efficiency of raw coal and reduce the labor intensity of workers.It is also one of the important links in the intelligent construction of coal mines.An experimental platform of coal gangue sorting robot based on machine vision is designed.The experimental platform is composed of Delta parallel robot,image acquisition equipment,grasping mechanism and conveyor belt.The image of coal gangue is obtained by industrial camera for preprocessing,and the gray and texture feature information of the image is extracted.Support vector machine(SVM) is used for training and classification detection and recognition of coal gangue dataset.Finally,the robot calibration and coal gangue image recognition and sorting experiments are carried out using the experimental platform,which can verify the feasibility of the experimental platform.
作者
商德勇
黄云山
张天佑
刘嵘锦
SHANG Deyong;HUANG Yunshan;ZHANG Tianyou;LIU Rongjin(School of Mechanical Electronic&Information Engineering,China University of Mining and Technology-Beijing,Beijing 100083,China;Intelligent Mining and Robot Research Institute,China University of Mining and TechnologyBeijing,Beijing 100083,China;Key Laboratory of Intelligent Mining and Robotics,Ministry of Emergency Management,Beijing 100083,China;Inner Mongolia Ebert Coal Technology Co.,Ltd.,Ordos 017200,China)
出处
《煤炭技术》
CAS
北大核心
2023年第7期136-139,共4页
Coal Technology
基金
国家自然科学基金面上资助项目(52174154)
国家自然基金创新研究群体项目(52121003)
中央高校基本科研业务费专项资金资助(2022YQJD21)
中国矿业大学(北京)本科课程教学改革项目(J210405)。
关键词
煤矸分拣
并联机器人
图像识别
实验平台
coal gangue sorting
parallel robot
machine vision
experimental platform