期刊文献+

稀疏低秩核非负张量分解高光谱图像解混

Sparse low-rank kernel non-negative tensor decomposition hyperspectral image unmixing
下载PDF
导出
摘要 为了解决传统非负张量分解过程中出现大维度矩阵导致计算速度变慢的问题,本文提出了一种基于稀疏低秩约束的核非负张量分解算法。该算法将张量数据映射到核空间内,添加稀疏约束结构,通过交替方向乘子法进行模型求解,并且考虑张量数据的非零元素及其位置,降低了算法计算的复杂度。在模拟和真实数据集上的实验验证了该算法的稳定性和有效性。 In order to solve the problem that large dimensional matrices slow down the calculation speed in the traditional non-negative tensor decomposition process,this paper proposes a kernel non-negative tensor decomposition algorithm based on sparse low-rank constraints.It first maps the tensor data into the kernel space,and then adds a sparse constraint structure,solving the model by alternating direction multiplier,and considering the non-zero elements of the tensor data and their positions in the process,which reduces the complexity of the algorithm calculation.Finally,the stability and effectiveness of the algorithm are verified on simulated and real datasets.
作者 张志鹏 谭文群 彭天亮 刘雪松 ZHANG Zhipeng;TAN Wenqun;PENG Tianliang;LIU Xuesong(School of Information Engineering,Nanchang Institute of Technology,Nanchang 330099,China;Jiangxi Provincial Key Laboratory of Collaborative Sensing and Intelligent Processing of Water Information,Nanchang Institute of Technology,Nanchang 330099,China)
出处 《南昌工程学院学报》 CAS 2023年第3期95-101,共7页 Journal of Nanchang Institute of Technology
基金 江西省教育厅科学技术研究项目(GJJ161126) 国家自然科学基金项目(61701215)。
关键词 稀疏 低秩 核函数 非负张量分解 高光谱图像 sparse low-rank kernel function non-negative tensor decomposition hyperspectral imaging
  • 相关文献

参考文献5

二级参考文献53

  • 1Akaike H. Information theory and an extension of the maximum likelihood principle. In: Petrov B N, Caki F, eds. Second International Symposium on Information Theory. Budapest: Akademiai Kiado, 1973. 267 -281.
  • 2Schwarz G. Estimating the dimension of a model. Ann Statist, 1978, 6:461-464.
  • 3Mallows C L. Some comments on Cp. Technometrics, 1973, 15:661-675.
  • 4Tibshirani R. Regression shrinkage and selection via the Lasso. J Royal Statist Soc B, 1996, 58:267-288.
  • 5Donoho D L, Huo X. Uncertainty principles and ideal atomic decomposition. IEEE Trans Inf Theory, 2001, 47:2845-2862.
  • 6Donoho D L, Elad E. Maximal sparsity representation via l1 minimization. Proc Natl Acal Sci, 2003, 100:2197-2202.
  • 7Chen S, Donoho D L, Saunders M. Atomic decomposition by basis pursuit. SIAM Rev, 2001, 43:129-159.
  • 8Fan J, Heng P. Nonconcave penalty likelihood with a diverging number of parameters. Ann Statist, 2004 32:928-961.
  • 9Zou H. The adaptive Lasso and its oracle properties. J Amer Statist Assoc, 2006, 101:1418-1429.
  • 10Zou H, Hastie T. Regularization and variable selection via the elastic net. J Royal Statist Soc B, 2005, 67:301-320.

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部